Nickels Jonathan D, Chatterjee Sneha, Stanley Christopher B, Qian Shuo, Cheng Xiaolin, Myles Dean A A, Standaert Robert F, Elkins James G, Katsaras John
Shull Wollan Center-A Joint Institute for Neutron Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America.
Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America.
PLoS Biol. 2017 May 23;15(5):e2002214. doi: 10.1371/journal.pbio.2002214. eCollection 2017 May.
Examining the fundamental structure and processes of living cells at the nanoscale poses a unique analytical challenge, as cells are dynamic, chemically diverse, and fragile. A case in point is the cell membrane, which is too small to be seen directly with optical microscopy and provides little observational contrast for other methods. As a consequence, nanoscale characterization of the membrane has been performed ex vivo or in the presence of exogenous labels used to enhance contrast and impart specificity. Here, we introduce an isotopic labeling strategy in the gram-positive bacterium Bacillus subtilis to investigate the nanoscale structure and organization of its plasma membrane in vivo. Through genetic and chemical manipulation of the organism, we labeled the cell and its membrane independently with specific amounts of hydrogen (H) and deuterium (D). These isotopes have different neutron scattering properties without altering the chemical composition of the cells. From neutron scattering spectra, we confirmed that the B. subtilis cell membrane is lamellar and determined that its average hydrophobic thickness is 24.3 ± 0.9 Ångstroms (Å). Furthermore, by creating neutron contrast within the plane of the membrane using a mixture of H- and D-fatty acids, we detected lateral features smaller than 40 nm that are consistent with the notion of lipid rafts. These experiments-performed under biologically relevant conditions-answer long-standing questions in membrane biology and illustrate a fundamentally new approach for systematic in vivo investigations of cell membrane structure.
在纳米尺度上研究活细胞的基本结构和过程面临着独特的分析挑战,因为细胞是动态的、化学性质多样且脆弱的。一个典型的例子是细胞膜,它太小以至于无法用光学显微镜直接观察到,并且对其他方法来说几乎没有观察对比度。因此,细胞膜的纳米尺度表征是在体外进行的,或者是在存在用于增强对比度和赋予特异性的外源标记的情况下进行的。在这里,我们在革兰氏阳性细菌枯草芽孢杆菌中引入一种同位素标记策略,以研究其质膜在体内的纳米尺度结构和组织。通过对该生物体进行遗传和化学操作,我们分别用特定量的氢(H)和氘(D)标记细胞及其膜。这些同位素具有不同的中子散射特性,而不会改变细胞的化学成分。从中子散射光谱中,我们证实枯草芽孢杆菌的细胞膜是层状的,并确定其平均疏水厚度为24.3±0.9埃(Å)。此外,通过使用H-脂肪酸和D-脂肪酸的混合物在膜平面内产生中子对比度,我们检测到小于40纳米的横向特征,这与脂筏的概念一致。这些在生物学相关条件下进行的实验回答了膜生物学中长期存在的问题,并说明了一种用于系统体内研究细胞膜结构的全新方法。