Suppr超能文献

机器学习驱动的中国儿童睫状肌麻痹验光屈光不正预测

Machine learning-driven prediction of cycloplegic refractive error in Chinese children.

作者信息

Chen Bichi, Tian Li, Tian Fuyue, Yang Qiaochu, Ruan Ying, Li Ying, Cao Min, Wu Chuanyan, Yang Maoyuan, Xu Suzhong, Deng Ruzhi

机构信息

Vision X Medical Technology Co., Ltd., Shanghai, China.

National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China.

出版信息

Front Cell Dev Biol. 2025 May 22;13:1608494. doi: 10.3389/fcell.2025.1608494. eCollection 2025.

Abstract

OBJECTIVE

To develop and validate machine learning (ML) models for predicting cycloplegic spherical equivalent refraction (SER) using non-cycloplegic parameters, addressing challenges in pediatric ophthalmic assessments.

METHODS

A prospective cohort of 2,274 Chinese children (4,548 eyes) aged 3∼16 years was stratified into development ( = 1819) and validation ( = 455) datasets. Six ML models (linear regression, random forest, extreme gradient boosting, multilayer perceptron, support vector machine, and light gradient boosting machine) were trained on demographics, non-cycloplegic refractive error, and ocular biometrics. Model performance was evaluated using , mean error (ME), mean absolute error (MAE), and clinical accuracy (proportions within ±0.50 D/±1.00 D).

RESULTS

In the validation dataset, ML models predicted cycloplegic SER with high (0.920∼0.934), low ME (-0.004∼0.015 D) and MAE (0.385∼0.413 D). The multilayer perceptron model achieved the highest accuracy ( = 0.934, MAE = 0.385 D), with 73.08% and 94.29% of predictions within ±0.50 D and ±1.00 D, respectively. Performance was optimal in children aged 7∼10 years (77.17∼79.70% within ±0.50 D) and those with low myopia (-3.00 to -0.50 D; 83.09∼83.56% within ±0.50 D). Non-cycloplegic measurements systematically overestimated myopia (mean difference: -0.39 ± 0.71 D, < 0.001), particularly in younger children and hyperopic eyes.

CONCLUSION

ML models provide accurate estimates of cycloplegic SER using non-cycloplegic parameters, offering a practical alternative for pediatric refractive assessments when cycloplegia is infeasible.

摘要

目的

开发并验证用于使用非散瞳参数预测散瞳等效球镜度(SER)的机器学习(ML)模型,以应对儿科眼科评估中的挑战。

方法

将2274名年龄在3至16岁的中国儿童(4548只眼)的前瞻性队列分为开发数据集(n = 1819)和验证数据集(n = 455)。基于人口统计学、非散瞳屈光不正和眼部生物特征训练了六种ML模型(线性回归、随机森林、极端梯度提升、多层感知器、支持向量机和轻梯度提升机)。使用决定系数(R²)、平均误差(ME)、平均绝对误差(MAE)和临床准确性(±0.50 D/±1.00 D范围内的比例)评估模型性能。

结果

在验证数据集中,ML模型预测散瞳SER的R²较高(0.920至0.934),ME较低(-0.004至0.015 D),MAE较低(0.385至0.413 D)。多层感知器模型实现了最高准确性(R² = 0.934,MAE = 0.385 D),分别有73.08%和94.29%的预测在±0.50 D和±1.00 D范围内。在7至10岁儿童(±0.50 D范围内为77.17%至79.70%)和低度近视儿童(-3.00至-0.50 D;±0.50 D范围内为83.09%至83.56%)中性能最佳。非散瞳测量系统性高估了近视(平均差异:-0.39 ± 0.71 D,P < 0.001),尤其是在年幼儿童和远视眼中。

结论

ML模型使用非散瞳参数提供了准确的散瞳SER估计值,当散瞳不可行时,为儿科屈光评估提供了一种实用的替代方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d506/12137252/4f400f21052b/fcell-13-1608494-g001.jpg

相似文献

1
Machine learning-driven prediction of cycloplegic refractive error in Chinese children.
Front Cell Dev Biol. 2025 May 22;13:1608494. doi: 10.3389/fcell.2025.1608494. eCollection 2025.
3
Effect of Cycloplegia on Refractive Error Measure in Chinese School Students.
Ophthalmic Epidemiol. 2022 Dec;29(6):629-639. doi: 10.1080/09286586.2021.1999986. Epub 2021 Nov 12.
4
Machine-learning random forest algorithms predict post-cycloplegic myopic corrections from noncycloplegic clinical data.
Optom Vis Sci. 2025 Mar 1;102(3):138-146. doi: 10.1097/OPX.0000000000002230. Epub 2025 Feb 24.
5
Prediction for Cycloplegic Refractive Error in Chinese School Students: Model Development and Validation.
Transl Vis Sci Technol. 2022 Jan 3;11(1):15. doi: 10.1167/tvst.11.1.15.
6
Prediction of spherical equivalent difference before and after cycloplegia in school-age children with machine learning algorithms.
Front Public Health. 2023 Apr 11;11:1096330. doi: 10.3389/fpubh.2023.1096330. eCollection 2023.
7
Effect of cycloplegia on the measurement of refractive error in Chinese children.
Clin Exp Optom. 2019 Mar;102(2):160-165. doi: 10.1111/cxo.12829. Epub 2018 Aug 22.
9
Effect of cycloplegia on the refractive status of children: the Shandong children eye study.
PLoS One. 2015 Feb 6;10(2):e0117482. doi: 10.1371/journal.pone.0117482. eCollection 2015.

本文引用的文献

3
Prediction of spherical equivalent refraction and axial length in children based on machine learning.
Indian J Ophthalmol. 2023 May;71(5):2115-2131. doi: 10.4103/IJO.IJO_2989_22.
4
Prediction of spherical equivalent difference before and after cycloplegia in school-age children with machine learning algorithms.
Front Public Health. 2023 Apr 11;11:1096330. doi: 10.3389/fpubh.2023.1096330. eCollection 2023.
7
Prediction for Cycloplegic Refractive Error in Chinese School Students: Model Development and Validation.
Transl Vis Sci Technol. 2022 Jan 3;11(1):15. doi: 10.1167/tvst.11.1.15.
9
Effect of Cycloplegia on Refractive Error Measure in Chinese School Students.
Ophthalmic Epidemiol. 2022 Dec;29(6):629-639. doi: 10.1080/09286586.2021.1999986. Epub 2021 Nov 12.
10
Normative data and percentile curves for axial length and axial length/corneal curvature in Chinese children and adolescents aged 4-18 years.
Br J Ophthalmol. 2023 Feb;107(2):167-175. doi: 10.1136/bjophthalmol-2021-319431. Epub 2021 Sep 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验