Suppr超能文献

通过结合AlphaFold和对接技术对第55轮CAPRI目标进行建模。

Modeling CAPRI Targets of Round 55 by Combining AlphaFold and Docking.

作者信息

Singh Amar, Copeland Matthew M, Kundrotas Petras J, Vakser Ilya A

机构信息

Computational Biology Program, The University of Kansas, Lawrence, Kansas, USA.

Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas, USA.

出版信息

Proteins. 2025 Jun 6. doi: 10.1002/prot.26853.

Abstract

In recent years, the field of structural biology has seen remarkable advancements, particularly in modeling of protein tertiary and quaternary structures. The AlphaFold deep learning approach revolutionized protein structure prediction by achieving near-experimental accuracy on many targets. This paper presents a detailed account of structural modeling of oligomeric targets in Round 55 of CAPRI by combining deep learning-based predictions (AlphaFold2 multimer pipeline) with traditional docking techniques in a hybrid approach to protein-protein docking. To complement the AlphaFold models generated for the given oligomeric state of the targets, we built docking predictions by combining models generated for lower-oligomeric states-dimers for trimeric targets and trimers/dimers for tetrameric targets. In addition, we used a template-based docking procedure applied to AlphaFold predicted structures of the monomers. We analyzed the clustering of the generated AlphaFold models, the confidence in the prediction of intra- and inter-chain residue-residue contacts, and the correlation of the AlphaFold predictions stability with the quality of the submitted models.

摘要

近年来,结构生物学领域取得了显著进展,尤其是在蛋白质三级和四级结构建模方面。AlphaFold深度学习方法通过在许多目标上实现接近实验精度,彻底改变了蛋白质结构预测。本文详细介绍了在CAPRI第55轮中,通过将基于深度学习的预测(AlphaFold2多聚体管道)与传统对接技术相结合的混合方法,对寡聚体目标进行结构建模的过程。为了补充针对目标给定寡聚状态生成的AlphaFold模型,我们通过组合为较低寡聚状态生成的模型(三聚体目标的二聚体模型以及四聚体目标的三聚体/二聚体模型)来构建对接预测。此外,我们对应用于AlphaFold预测的单体结构的基于模板的对接程序进行了分析。我们分析了生成的AlphaFold模型的聚类情况、链内和链间残基-残基接触预测的置信度,以及AlphaFold预测稳定性与提交模型质量之间的相关性。

相似文献

1
2
Prediction of homoprotein and heteroprotein complexes by protein docking and template-based modeling: A CASP-CAPRI experiment.
Proteins. 2016 Sep;84 Suppl 1(Suppl Suppl 1):323-48. doi: 10.1002/prot.25007. Epub 2016 Jun 1.
3
Reliable protein-protein docking with AlphaFold, Rosetta, and replica exchange.
Elife. 2025 May 27;13:RP94029. doi: 10.7554/eLife.94029.
4
Assessment of Protein Complex Predictions in CASP16: Are we making progress?
bioRxiv. 2025 May 30:2025.05.29.656875. doi: 10.1101/2025.05.29.656875.
7
Harnessing AlphaFold to reveal hERG channel conformational state secrets.
Elife. 2025 Jul 14;13:RP104901. doi: 10.7554/eLife.104901.
9
AlphaFold 3 accurately models natural variants of catalase KatA.
Microbiol Spectr. 2025 Sep 2;13(9):e0067025. doi: 10.1128/spectrum.00670-25. Epub 2025 Aug 12.
10
Harnessing AlphaFold to reveal hERG channel conformational state secrets.
bioRxiv. 2024 Oct 24:2024.01.27.577468. doi: 10.1101/2024.01.27.577468.

本文引用的文献

1
Reliable protein-protein docking with AlphaFold, Rosetta, and replica exchange.
Elife. 2025 May 27;13:RP94029. doi: 10.7554/eLife.94029.
2
Predicting multiple conformations of ligand binding sites in proteins suggests that AlphaFold2 may remember too much.
Proc Natl Acad Sci U S A. 2024 Nov 26;121(48):e2412719121. doi: 10.1073/pnas.2412719121. Epub 2024 Nov 20.
3
CAPRI-Q: The CAPRI resource evaluating the quality of predicted structures of protein complexes.
J Mol Biol. 2024 Sep 1;436(17):168540. doi: 10.1016/j.jmb.2024.168540. Epub 2024 Mar 16.
4
Diffusion of proteins in crowded solutions studied by docking-based modeling.
J Chem Phys. 2024 Sep 7;161(9). doi: 10.1063/5.0220545.
5
Candidate proteins interacting with cytoskeleton in cells from the basal airway epithelium .
Front Mol Biosci. 2024 Jul 30;11:1423503. doi: 10.3389/fmolb.2024.1423503. eCollection 2024.
6
The power and pitfalls of AlphaFold2 for structure prediction beyond rigid globular proteins.
Nat Chem Biol. 2024 Aug;20(8):950-959. doi: 10.1038/s41589-024-01638-w. Epub 2024 Jun 21.
7
Generalized biomolecular modeling and design with RoseTTAFold All-Atom.
Science. 2024 Apr 19;384(6693):eadl2528. doi: 10.1126/science.adl2528.
8
Impact of AlphaFold on structure prediction of protein complexes: The CASP15-CAPRI experiment.
Proteins. 2023 Dec;91(12):1658-1683. doi: 10.1002/prot.26609. Epub 2023 Oct 31.
9
GRAMM Web Server for Protein Docking.
Methods Mol Biol. 2024;2714:101-112. doi: 10.1007/978-1-0716-3441-7_5.
10
Prediction of protein assemblies by structure sampling followed by interface-focused scoring.
Proteins. 2023 Dec;91(12):1724-1733. doi: 10.1002/prot.26569. Epub 2023 Aug 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验