Xu Guangsheng, Bai Xue, Yang Zhihua, Han Jian, Pan Shilie
Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi, 830011, China.
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
Angew Chem Int Ed Engl. 2025 Sep 15;64(38):e202510363. doi: 10.1002/anie.202510363. Epub 2025 Aug 11.
While birefringence phase-matching (PM) remains the most practical approach for nonlinear optical (NLO) frequency conversion, conventional phosphate crystals suffer from intrinsically low birefringence (Δn < 0.05) that hinders PM behavior in the solar-blind ultraviolet (UV) region (λ < 280 nm). Herein, we demonstrate a π-conjugated cation engineering strategy to break this limitation, reporting two phosphite-based NLO crystals: (CNOH)HPO (GUPO) and C(NH)HPO (GPO). The synergistic alignment of π-conjugated guanidinium cations and [HPO]⁻ anions enables record-breaking optical anisotropy (Δn = 0.19 @ 589.3 nm for GUPO), surpassing all known inorganic phosphates. Crucially, GUPO is the first phosphate to realize full-wavelength PM, in which the PM wavelength fully covers its optical transparency range down to 215 nm. Concurrently, GUPO exhibits exceptional second-harmonic generation (SHG) response (2.2 × KDP at 1064 nm and 1.0 × β-BBO at 532 nm), which may enable direct 266 nm laser generation. Mechanistic studies reveal that the giant birefringence originates from oriented π-π interactions between cations, while the SHG response stems from the cooperative polarization of cations. This work establishes π-conjugated cation engineering as a paradigm for designing UV NLO materials, with GUPO crystal emerging as a cheap, efficient alternative to conventional UV NLO crystals.
虽然双折射相位匹配(PM)仍然是非线性光学(NLO)频率转换最实用的方法,但传统的磷酸盐晶体具有固有的低双折射(Δn < 0.05),这阻碍了在日盲紫外(UV)区域(λ < 280 nm)的相位匹配行为。在此,我们展示了一种π共轭阳离子工程策略来打破这一限制,报道了两种基于亚磷酸盐的NLO晶体:(CNOH)HPO(GUPO)和C(NH)HPO(GPO)。π共轭胍阳离子和[HPO]⁻阴离子的协同排列实现了破纪录的光学各向异性(GUPO在589.3 nm处的Δn = 0.19),超过了所有已知的无机磷酸盐。至关重要的是,GUPO是第一种实现全波长相位匹配的磷酸盐,其中相位匹配波长完全覆盖其光学透明范围直至215 nm。同时,GUPO表现出优异的二次谐波产生(SHG)响应(在1064 nm处为2.2×KDP,在532 nm处为1.0×β-BBO),这可能实现直接产生266 nm激光。机理研究表明,巨大的双折射源于阳离子之间的取向π-π相互作用,而SHG响应源于阳离子的协同极化。这项工作将π共轭阳离子工程确立为设计紫外NLO材料的范例,GUPO晶体成为传统紫外NLO晶体的廉价、高效替代品。