Jia Hangwei, Jin Yaqi, An Shuai, Liu Xu, Yang Zhihua, Hou Xueling, Pan Shilie
Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China.
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
ACS Appl Mater Interfaces. 2025 Sep 24;17(38):53808-53815. doi: 10.1021/acsami.5c14918. Epub 2025 Sep 16.
The development of high-performance ultraviolet (UV) birefringent crystals is crucial for polarization manipulation in advanced optical technology. Planar π-conjugated groups have attracted significant research attention due to their potential for achieving high birefringence (Δ) in optical materials. However, systematically elucidating the structure-property relationships through synergistic regulation between cations and anions with distinct geometric configurations remains an area requiring in-depth investigation. This study employed an anionic group replacement modification strategy to successfully achieve the controlled synthesis of novel compounds, providing important insights for precise regulation and structure-property relationship studies. Specifically, four melamine sulfonate crystals with the chemical formula CNHSOX·HO (X = CF, CHOH, CH, and CH; = 0, 1), were synthesized and systematically characterized. Notably, all these crystals exhibit significant optical anisotropy, with birefringence ranging from 0.20 to 0.38@546 nm and an ultraviolet (UV) cutoff edge below 250 nm. Among them, CNHSOCF exhibits an exceptionally high birefringence (Δ = 0.38@546 nm). As far as we know, this is the highest value in the sulfonate system with UV cutoff edge below 300 nm and surpasses most commercially available birefringent crystals. Most importantly, this study reveals a framework linking anion geometry, structure and birefringence, providing a reference for designing high-performance birefringent crystals by regulating anions with different geometric configurations.
高性能紫外(UV)双折射晶体的发展对于先进光学技术中的偏振操纵至关重要。平面π共轭基团因其在光学材料中实现高双折射(Δ)的潜力而备受研究关注。然而,通过具有不同几何构型的阳离子和阴离子之间的协同调节来系统地阐明结构-性能关系仍然是一个需要深入研究的领域。本研究采用阴离子基团取代改性策略成功实现了新型化合物的可控合成,为精确调控和结构-性能关系研究提供了重要见解。具体而言,合成了四种化学式为CNHSOX·HO(X = CF、CHOH、CH和CH; = 0、1)的三聚氰胺磺酸盐晶体,并对其进行了系统表征。值得注意的是,所有这些晶体都表现出显著的光学各向异性,双折射在546 nm处为0.20至0.38,紫外(UV)截止边低于250 nm。其中,CNHSOCF表现出异常高的双折射(Δ = 0.38@546 nm)。据我们所知,这是在紫外截止边低于300 nm的磺酸盐体系中的最高值,并且超过了大多数市售双折射晶体。最重要的是,本研究揭示了一个将阴离子几何形状、结构和双折射联系起来的框架,为通过调节具有不同几何构型的阴离子来设计高性能双折射晶体提供了参考。