Múgica-Galán Paula, Miró-Bueno Jesús, Hueso-Gil Ángeles, Japón Pablo, Goñi-Moreno Ángel
Systems Biology Department, Centro Nacional de Biotecnologia, CSIC, Darwin 3, 28049 Madrid, Spain.
Universidad Politécnica de Madrid, Madrid 28223, Spain.
ACS Synth Biol. 2025 Jun 20;14(6):2380-2385. doi: 10.1021/acssynbio.5c00036. Epub 2025 Jun 6.
Engineering synthetic consortia to perform distributed functions requires robust quorum sensing (QS) systems to facilitate communication between cells. However, the current QS toolbox lacks standardized implementations, which are particularly valuable for use in bacteria beyond the model species . We developed a set of three QS systems encompassing both sender and receiver modules, constructed using backbones from the SEVA (Standard European Vector Architecture) plasmid collection. This increases versatility, allowing plasmid features like the origin of replication or antibiotic marker to be easily swapped. The systems were characterized using the synthetic biology chassis . We first tested individual modules, then combined sender and receiver modules in the same host, and finally assessed the performance across separate cells to evaluate consortia dynamics. Alongside the QS set, we provide mathematical models and rate parameters to support the design efforts. Together, these tools advance the engineering of robust and predictable multicellular functions.
设计能够执行分布式功能的合成菌群需要强大的群体感应(QS)系统来促进细胞间的通讯。然而,当前的QS工具箱缺乏标准化的实施方案,而这些方案对于在模式物种以外的细菌中使用尤为重要。我们开发了一组包含发送器和接收器模块的三个QS系统,它们使用来自SEVA(标准欧洲载体架构)质粒文库的骨架构建而成。这增加了通用性,使得诸如复制起点或抗生素标记等质粒特征能够轻松互换。这些系统使用合成生物学底盘进行了表征。我们首先测试了各个模块,然后在同一宿主中组合发送器和接收器模块,最后评估了不同细胞间的性能以评估菌群动态。除了QS系统组,我们还提供数学模型和速率参数以支持设计工作。这些工具共同推动了强大且可预测的多细胞功能的工程化。