Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany.
Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany.
Nat Protoc. 2023 Nov;18(11):3253-3288. doi: 10.1038/s41596-023-00882-z. Epub 2023 Oct 5.
Much of our current understanding of microbiology is based on the application of genetic engineering procedures. Since their inception (more than 30 years ago), methods based largely on allelic exchange and two-step selection processes have become a cornerstone of contemporary bacterial genetics. While these tools are established for adapted laboratory strains, they have limited applicability in clinical or environmental isolates displaying a large and unknown genetic repertoire that are recalcitrant to genetic modifications. Hence, new tools allowing genetic engineering of intractable bacteria must be developed to gain a comprehensive understanding of them in the context of their biological niche. Herein, we present a method for precise, efficient and rapid engineering of the opportunistic pathogen Pseudomonas aeruginosa. This procedure relies on recombination of short single-stranded DNA facilitated by targeted double-strand DNA breaks mediated by a synthetic Cas9 coupled with the efficient Ssr recombinase. Possible applications include introducing single-nucleotide polymorphisms, short or long deletions, and short DNA insertions using synthetic single-stranded DNA templates, drastically reducing the need of PCR and cloning steps. Our toolkit is encoded on two plasmids, harboring an array of different antibiotic resistance cassettes; hence, this approach can be successfully applied to isolates displaying natural antibiotic resistances. Overall, this toolkit substantially reduces the time required to introduce a range of genetic manipulations to a minimum of five experimental days, and enables a variety of research and biotechnological applications in both laboratory strains and difficult-to-manipulate P. aeruginosa isolates.
我们目前对微生物学的大部分理解都是基于遗传工程程序的应用。自它们诞生以来(超过 30 年前),主要基于等位基因交换和两步选择过程的方法已经成为当代细菌遗传学的基石。虽然这些工具已经在适应实验室菌株中得到应用,但它们在临床或环境分离株中的应用有限,这些分离株显示出大量未知的遗传组成,并且对遗传修饰具有抗性。因此,必须开发新的工具来对难以处理的细菌进行基因工程,以在其生物生态位的背景下全面了解它们。在这里,我们提出了一种用于精确、高效和快速工程化机会性病原体铜绿假单胞菌的方法。该程序依赖于由合成 Cas9 介导的靶向双链 DNA 断裂所促进的短单链 DNA 的重组,同时结合高效的 Ssr 重组酶。可能的应用包括使用合成的单链 DNA 模板引入单核苷酸多态性、短或长缺失以及短 DNA 插入,从而大大减少了 PCR 和克隆步骤的需求。我们的工具包编码在两个质粒上,携带一系列不同的抗生素抗性盒;因此,这种方法可以成功地应用于显示天然抗生素抗性的分离株。总的来说,这个工具包将引入一系列遗传操作所需的时间从最少的五个实验日减少到五天,并且能够在实验室菌株和难以操作的铜绿假单胞菌分离株中进行各种研究和生物技术应用。