Suppr超能文献

AVP-HNCL:基于队列负采样策略的创新对比学习用于双相抗病毒肽预测

AVP-HNCL: Innovative Contrastive Learning with a Queue-Based Negative Sampling Strategy for Dual-Phase Antiviral Peptide Prediction.

作者信息

Li Yuanhao, Geng Aoyun, Zhou Zheyu, Cui Feifei, Xu Junlin, Meng Yajie, Wei Leyi, Zou Quan, Zhang Qingchen, Zhang Zilong

机构信息

School of Computer Science and Technology, Hainan University, Haikou 570228, China.

School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China.

出版信息

J Chem Inf Model. 2025 Jun 23;65(12):5868-5886. doi: 10.1021/acs.jcim.5c00306. Epub 2025 Jun 6.

Abstract

Viral infections have long been a core focus in the field of public health. Antiviral peptides (AVPs), due to their unique mechanisms of action and significant inhibitory effects against a wide range of viruses, exhibit tremendous potential in protecting organisms from various viral diseases. However, existing studies on antiviral peptide recognition often rely on feature selection. As data volume continues to grow and task complexity increases, traditional methods are increasingly showing limitations in feature extraction capabilities and model generalization performance. To tackle these challenges, we propose an innovative two-stage predictive framework that integrates the ESM2 model, data augmentation, feature fusion, and contrastive learning techniques. This framework enables simultaneous identification of AVPs and their subclasses. By introducing a novel top-k queue-based contrastive learning strategy, the framework significantly improves the model's accuracy in distinguishing challenging positive and negative samples and its generalization performance. This approach provides robust theoretical support and technical tools for advancing research on antiviral peptides. Model evaluation results show that on Set 1-nonAVP, the framework achieves an accuracy of 0.9362 and a Matthews correlation coefficient (MCC) score of 0.8730. On the Set 2-nonAMP, the model achieves perfect accuracy (1.0000) and an MCC score of 1.0000. In addition, during the second stage, the model accurately predicts the antiviral activity of antiviral peptides against six major virus families and eight specific viruses. To further enhance accessibility for users, we have developed a user-friendly web interface, available at http://www.bioai-lab.com/AVP-HNCL.

摘要

病毒感染长期以来一直是公共卫生领域的核心关注点。抗病毒肽(AVPs)由于其独特的作用机制以及对多种病毒具有显著的抑制作用,在保护生物体免受各种病毒性疾病侵害方面展现出巨大潜力。然而,现有的抗病毒肽识别研究通常依赖于特征选择。随着数据量持续增长和任务复杂性增加,传统方法在特征提取能力和模型泛化性能方面越来越显示出局限性。为应对这些挑战,我们提出了一种创新的两阶段预测框架,该框架整合了ESM2模型、数据增强、特征融合和对比学习技术。此框架能够同时识别抗病毒肽及其亚类。通过引入一种基于新颖的top-k队列的对比学习策略,该框架显著提高了模型区分具有挑战性的正样本和负样本的准确性及其泛化性能。这种方法为推进抗病毒肽研究提供了有力的理论支持和技术工具。模型评估结果表明,在Set 1-nonAVP数据集上,该框架的准确率达到0.9362,马修斯相关系数(MCC)得分达到0.8730。在Set 2-nonAMP数据集上,该模型实现了完美准确率(1.0000),MCC得分达到1.0000。此外,在第二阶段,该模型准确预测了抗病毒肽对六个主要病毒家族和八种特定病毒的抗病毒活性。为进一步提高用户的可访问性,我们开发了一个用户友好的网页界面,网址为http://www.bioai-lab.com/AVP-HNCL。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验