Wilbert Dominik, Voigt Melanie, Jaeger Martin
Department of Chemistry and ILOC, Niederrhein University of Applied Sciences, Frankenring 20, 47798, Krefeld, Germany.
Anal Bioanal Chem. 2025 Jun 6. doi: 10.1007/s00216-025-05945-6.
Process analytical technology (PAT) plays a key role in enhancing the efficiency and resulting quality of chemical processes. Hitherto, suitable methods enable real-time analysis and provide meaningful and robust data and models. Spectroscopic techniques, e.g., vibrational or absorption, offer in situ insight into reaction progress but may require advanced data analysis to interpret the complex spectra. In this study, inline and online monitoring by spectroscopic techniques was applied to a Schiff base formation as an illustrative example and enhanced by data analysis. Two-dimensional heterocorrelation spectroscopy was used to identify and select relevant spectral regions. The results allowed data reduction and data fusion for model building and process description. First, qualitative process representation was achieved through principal component analysis (PCA). Quantitative prediction models were then developed using multivariate curve resolution-alternating least squares (MCR-ALS) with evolving factor analysis (EFA), partial least squares (PLS), and supporting vector regression (SVR) analysis. The low- and mid-level data fusion based on the spectroscopic data and the multivariate models enabled the development of accurate predictive models, with the best prediction achieved by PLS models from low-level data fusion. The results demonstrate the strength of the combination of spectroscopy, multivariate data analysis, and-in the field of PAT rarely exploited-heterocovariance transformation and data fusion to obtain process understanding and reaction models. The methodology may provide further contributions to automatable process control in industrial applications.
过程分析技术(PAT)在提高化学过程的效率和最终质量方面发挥着关键作用。迄今为止,合适的方法能够实现实时分析,并提供有意义且可靠的数据和模型。光谱技术,例如振动光谱或吸收光谱,能够提供反应进程的原位信息,但可能需要先进的数据分析来解读复杂的光谱。在本研究中,以席夫碱形成反应为例,应用光谱技术进行在线和联机监测,并通过数据分析加以强化。利用二维异相关光谱来识别和选择相关光谱区域。这些结果有助于进行数据简化和数据融合,以用于模型构建和过程描述。首先,通过主成分分析(PCA)实现定性的过程表征。然后使用多元曲线分辨-交替最小二乘法(MCR-ALS)结合渐进因子分析(EFA)、偏最小二乘法(PLS)和支持向量回归(SVR)分析来开发定量预测模型。基于光谱数据和多元模型的低层次和中间层次数据融合能够开发出准确的预测模型,其中低层次数据融合的PLS模型实现了最佳预测效果。结果表明,光谱学、多元数据分析以及在PAT领域很少被利用的异协方差变换和数据融合相结合的方法,能够获得对过程的理解并建立反应模型。该方法可能会为工业应用中的自动化过程控制做出进一步贡献。