Suppr超能文献

当前和未来对工业分析基础设施的要求-第 2 部分:智能传感器。

Current and future requirements to industrial analytical infrastructure-part 2: smart sensors.

机构信息

Arbeitskreis Prozessanalytik, Gesellschaft Deutscher Chemiker, 60486, Frankfurt am Main, Germany.

Covestro Deutschland AG, /Uerdingen, 47829, Krefeld, Germany.

出版信息

Anal Bioanal Chem. 2020 Apr;412(9):2037-2045. doi: 10.1007/s00216-020-02421-1. Epub 2020 Feb 14.

Abstract

Complex processes meet and need Industry 4.0 capabilities. Shorter product cycles, flexible production needs, and direct assessment of product quality attributes and raw material attributes call for an increased need of new process analytical technologies (PAT) concepts. While individual PAT tools may be available since decades, we need holistic concepts to fulfill above industrial needs. In this series of two contributions, we want to present a combined view on the future of PAT (process analytical technology), which is projected in smart labs (Part 1) and smart sensors (Part 2). Part 2 of this feature article series describes the future functionality as well as the ingredients of a smart sensor aiming to eventually fuel full PAT functionality. The smart sensor consists of (i) chemical and process information in the physical twin by smart field devices, by measuring multiple components, and is fully connected in the IIoT 4.0 environment. In addition, (ii) it includes process intelligence in the digital twin, as to being able to generate knowledge from multi-sensor and multi-dimensional data. The cyber-physical system (CPS) combines both elements mentioned above and allows the smart sensor to be self-calibrating and self-optimizing. It maintains its operation autonomously. Furthermore, it allows-as central PAT enabler-a flexible but also target-oriented predictive control strategy and efficient process development and can compensate variations of the process and raw material attributes. Future cyber-physical production systems-like smart sensors-consist of the fusion of two main pillars, the physical and the digital twins. We discuss the individual elements of both pillars, such as connectivity, and chemical analytics on the one hand as well as hybrid models and knowledge workflows on the other. Finally, we discuss its integration needs in a CPS in order to allow its versatile deployment in efficient process development and advanced optimum predictive process control.

摘要

复杂的过程相互交汇,需要工业 4.0 能力。更短的产品周期、灵活的生产需求以及对产品质量属性和原材料属性的直接评估,都需要增加新的过程分析技术(PAT)概念。虽然个别 PAT 工具可能已经存在了几十年,但我们需要整体概念来满足上述工业需求。在这两部分的系列中,我们希望对 PAT(过程分析技术)的未来提出一个综合的看法,该看法体现在智能实验室(第 1 部分)和智能传感器(第 2 部分)中。本系列文章的第 2 部分描述了未来智能传感器的功能以及组成部分,旨在最终实现全 PAT 功能。智能传感器由(i)智能现场设备在物理孪生体中的化学和过程信息、通过测量多个组件,并在 IIoT 4.0 环境中完全连接组成。此外,(ii)它还包括数字孪生体中的过程智能,以便能够从多传感器和多维数据中生成知识。信息物理系统(CPS)结合了上述两个要素,使智能传感器能够实现自校准和自优化。它可以自主运行。此外,它还允许作为中央 PAT 使能器的灵活但有针对性的预测控制策略和高效的过程开发,并能够补偿过程和原材料属性的变化。未来的信息物理生产系统,如智能传感器,由物理和数字双胞胎这两个主要支柱融合而成。我们讨论了这两个支柱的各个要素,例如连接性和化学分析,以及混合模型和知识工作流程。最后,我们讨论了其在 CPS 中的集成需求,以便能够在高效的过程开发和先进的最佳预测过程控制中灵活部署。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f84/7072042/a0215a378d08/216_2020_2421_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验