Bai Dongyu, Liu Junxian, Nie Yihan, Gu Yuantong, Qi Dongchen, Krasheninnikov Arkady, Kou Liangzhi
School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland, 4001, Australia.
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China.
Small Methods. 2025 Jun 20:e2500683. doi: 10.1002/smtd.202500683.
Polar domains and their manipulation-particularly the creation and dynamic control-have garnered significant attention, owing to their rich physics and promising applications in digital memory devices. In this work, using density functional theory (DFT) and deep learning molecular dynamics (DLMD) simulations, it is demonstrated that polar domains can be created and manipulated in twisted bilayers of ferroelectric CuInPS, as a result of interfacial ferroelectric (antiferroelectric) coupling in AA (AB) stacked region. Unlike the topological polar vortex and skyrmions observed in superlattices of (PbTiO)/(SrTiO) and sliding bilayers of BN and MoS, the underlying mechanism of polar domain formation in this system arises from stacking-dependent energy barriers for ferroelectric switching and variations in switching speeds under thermal perturbations. Notably, the thermal stability and polarization lifetimes are highly sensitive to twist angles and temperature, and can be further manipulated by external electric fields and strain. Through multi-scale simulations, this study provides a novel approach to exploring how twist angles influence domain evolution and underscores the potential for controlling local polarization in ferroelectric materials via rotational manipulation.
极性畴及其操控——特别是其创建和动态控制——由于其丰富的物理特性以及在数字存储设备中的潜在应用而备受关注。在这项工作中,通过密度泛函理论(DFT)和深度学习分子动力学(DLMD)模拟表明,由于在AA(AB)堆叠区域中的界面铁电(反铁电)耦合,在铁电CuInPS的扭曲双层中可以创建和操控极性畴。与在(PbTiO)/(SrTiO)超晶格以及BN和MoS滑动双层中观察到的拓扑极性涡旋和斯格明子不同,该系统中极性畴形成的潜在机制源于铁电开关的堆叠依赖能垒以及热扰动下开关速度的变化。值得注意的是,热稳定性和极化寿命对扭曲角和温度高度敏感,并且可以通过外部电场和应变进一步操控。通过多尺度模拟,本研究提供了一种探索扭曲角如何影响畴演化的新方法,并强调了通过旋转操控来控制铁电材料中局部极化的潜力。