Assad Mhd Adel, Abdelaziz Moheb, Hartig Torge, Strunskus Thomas, Vahl Alexander, Faupel Franz, Elbahri Mady
Nanochemistry and Nanoengineering, School of Chemical Engineering, Department of Chemistry and Materials Science, Aalto University, Espoo, Finland.
Institute for Materials Science, Chair for Multicomponent Materials, Faculty of Engineering, Kiel University, Kiel, Germany.
Adv Mater. 2025 Sep;37(35):e2501080. doi: 10.1002/adma.202501080. Epub 2025 Jun 6.
Inspired by nature's color-driven thermal regulation mechanisms and the atmospheric radiative effects of cloud-aerosol interactions, this work presents the design of disordered metasurfaces capable of achieving white and grey plasmonic colors. This innovation advances light and thermal management technologies within the framework of stealth and camouflage applications. The white plasmonic metasurfaces emulate the cooling effects of clouds, reducing substrate temperatures by a relative -10 °C under standard solar illumination through backscattering. In contrast, transitioning to a grey state with a nanocomposite absorber suppresses backscattering and enables efficient light trapping, resulting in a relative +10 °C temperature increase compared to conventional black absorbers. These findings introduce a novel approach to localized thermal management, distinct from traditional passive cooling strategies that rely on high-emissivity materials. The metasurfaces' low-emissivity properties and visible appearance open opportunities in advanced camouflage, stealth technologies, and thermal energy solutions. Additionally, the scalable, sustainable design, realized through all-in-chamber nanofabrication via sputtering, eliminates the need for chemically intensive synthesis methods while ensuring long-term stability.
受自然界颜色驱动的热调节机制以及云 - 气溶胶相互作用的大气辐射效应启发,这项工作展示了能够实现白色和灰色等离子体颜色的无序超表面设计。这一创新在隐身和伪装应用框架内推动了光和热管理技术的发展。白色等离子体超表面模拟云层的冷却效果,在标准太阳光照下通过背散射使基底温度相对降低10°C。相比之下,使用纳米复合吸收体转变为灰色状态可抑制背散射并实现高效光捕获,与传统黑色吸收体相比,温度相对升高10°C。这些发现引入了一种全新的局部热管理方法,与依赖高发射率材料的传统被动冷却策略不同。超表面的低发射率特性和可见外观为先进伪装、隐身技术和热能解决方案带来了机遇。此外,通过溅射全腔纳米制造实现的可扩展、可持续设计,无需化学密集型合成方法,同时确保长期稳定性。