Du Yayun, Gu Jianyu, Duan Shiyuan, Trueb Jacob, Tzavelis Andreas, Shin Hee-Sup, Arafa Hany, Li Xiuyuan, Huang Yonggang, Carr Andrew N, Davies Charles R, Rogers John A
Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208.
Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208.
Proc Natl Acad Sci U S A. 2025 Jun 10;122(23):e2501220122. doi: 10.1073/pnas.2501220122. Epub 2025 Jun 6.
Accurate identification of sleep stages and disorders is crucial for maintaining health, preventing chronic conditions, and improving diagnosis and treatment. Direct respiratory measurements, as key biomarkers, are missing in traditional wrist- or finger-worn wearables, which thus limit their precision in detection of sleep stages and sleep disorders. By contrast, this work introduces a simple, multimodal, skin-integrated, energy-efficient mechanoacoustic sensor capable of synchronized cardiac and respiratory measurements. The mechanical design enhances sensitivity and durability, enabling continuous, wireless monitoring of essential vital signs (respiration rate, heart rate and corresponding variability, temperature) and various physical activities. Systematic physiology-based analytics involving explainable machine learning allows both precise sleep characterization and transparent tracking of each factor's contribution, demonstrating the dominance of respiration, as validated through a diverse range of human subjects, both healthy and with sleep disorders. This methodology enables cost-effective, clinical-quality sleep tracking with minimal user effort, suitable for home and clinical use.
准确识别睡眠阶段和睡眠障碍对于维持健康、预防慢性病以及改善诊断和治疗至关重要。传统的腕戴式或指戴式可穿戴设备缺少作为关键生物标志物的直接呼吸测量,因此限制了它们在检测睡眠阶段和睡眠障碍方面的精度。相比之下,这项工作引入了一种简单、多模态、皮肤集成、节能的机械声学传感器,能够同步进行心脏和呼吸测量。其机械设计提高了灵敏度和耐用性,能够持续、无线地监测基本生命体征(呼吸频率、心率及其相应变异性、体温)以及各种身体活动。基于系统生理学的分析,结合可解释的机器学习,既能实现精确的睡眠特征描述,又能透明地追踪每个因素的贡献,证明了呼吸的主导作用,这已通过众多健康和患有睡眠障碍的人类受试者得到验证。这种方法能够以最小的用户工作量实现经济高效、临床级别的睡眠追踪,适用于家庭和临床使用。