Suppr超能文献

基于无偏倚人群的统计数据,以获取实验性创伤性脑损伤后的病理损伤负担。

Unbiased population-based statistics to obtain pathologic burden of injury after experimental TBI.

作者信息

Smith G, Santana-Gomez C, Staba R J, Harris N G

机构信息

UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, USA.

Department of Neurology, University of California at Los Angeles, Los Angeles, CA 90095, USA.

出版信息

Exp Neurol. 2025 Oct;392:115332. doi: 10.1016/j.expneurol.2025.115332. Epub 2025 Jun 4.

Abstract

Reproducibility of scientific data is a current concern throughout the neuroscience field. There are multiple on-going efforts to help resolve this problem. Within the preclinical neuroimaging field, the continued use of a region-of interest (ROI) type approaches combined with the well-known spatial heterogeneity of traumatic brain injury pathology is a barrier to the replicability and repeatability of data. Here we propose the conjoint use of an unbiased analysis of the whole brain after injury together with a population-based statistical analysis of sham-control brains as one approach that has been used in clinical research to help resolve this issue. The approach produces two volumes of pathology that are outside the normal range of sham brains, and can be interpreted as whole brain burden of injury. Using diffusion weighted imaging-derived scalars from a tensor analysis of data acquired from adult, male rats at 2, 9 days, 1 and 5 months after lateral fluid percussion injury (LFPI) and in shams (n = 73 and 12, respectively), we compared a data-driven, z-score mapping method to a whole brain and white matter-specific analysis, as well as an ROI-based analysis with brain regions preselected by virtue of their large group effect sizes. We show that the data-driven approach is statistically robust, providing the advantage of a large group effect size typical of a ROI analysis of mean scalar values derived from the tensor in regions of gross injury, but without the large multi-region statistical correction required for interrogating multiple brain areas, and without the potential bias inherent with using preselected ROIs. We show that the technique correctly captures the expected longitudinal time-course of the diffusion scalar volumes based on the spatial extent of the pathology and the known temporal changes in scalar values in the LFPI model.

摘要

科学数据的可重复性是当前整个神经科学领域关注的问题。目前有多项正在进行的工作来帮助解决这一问题。在临床前神经成像领域,持续使用感兴趣区域(ROI)类型的方法,再加上创伤性脑损伤病理众所周知的空间异质性,是数据可复制性和可重复性的一个障碍。在此,我们提出将损伤后全脑的无偏分析与假手术对照脑的基于群体的统计分析联合使用,作为临床研究中用于帮助解决这一问题的一种方法。该方法产生两体积超出假手术脑正常范围的病理情况,可解释为全脑损伤负担。利用从成年雄性大鼠在侧方流体冲击伤(LFPI)后2天、9天、1个月和5个月以及假手术组(分别为n = 73和12)获取的数据进行张量分析得到的扩散加权成像衍生标量,我们将一种数据驱动的z分数映射方法与全脑和白质特异性分析以及基于ROI的分析进行了比较,后者的脑区是根据其较大的组效应量预先选择的。我们表明,数据驱动的方法在统计学上是稳健的,具有在严重损伤区域从张量导出的平均标量值的ROI分析中典型的大组效应量优势,但无需对多个脑区进行大量的多区域统计校正,也没有使用预先选择的ROI所固有的潜在偏差。我们表明,该技术基于病理的空间范围和LFPI模型中标量值已知的时间变化,正确地捕捉了扩散标量体积预期的纵向时间进程。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验