Alyami Nouf M, Almuhaini Ghufran A, Alobaid Hussah, Maodaa Saleh, Alshiban Noura M, Alnakhli Zainab Ali, Alashkar Faten Jamal, Ibrahim Khalid Elfaki, Alqahtani Saeed, Almeer Rafa, Alyami Hanadi M, Alarifi Saud
Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
Advanced Diagnostics and Therapeutics Institute, King Abdulaziz City for Science and Technology (KACST), Health Sector, Riyadh, 11442, Saudi Arabia.
Sci Rep. 2025 Jun 6;15(1):19926. doi: 10.1038/s41598-025-04996-0.
Lanthanum oxide nanoparticles (La₂O₃ NPs) possess unique electronic properties. The increased use of La₂O₃ NPs raises the risk of exposure, potentially leading to bioaccumulation and metabolic disruptions. This study examines the impact of La₂O₃ NPs on the kidneys of mice administered intraperitoneally (i.p) at doses of 60, 150, and 300 mg/kg for 14 and 35 days. Results indicated variations in SOD gene expression and GSH plasma levels that were inversely correlated with NP dosage. A strong positive relationship was found between the inflammatory marker NOS2 transcription and NP dose, confirming pro-inflammatory effects based on concentration. Significant elevations, particularly at lower NP doses, were observed with KIM-1, uric acid, urea, ALP, ALT, and AST, indicating kidney and liver dysfunction. Furthermore, markers of kidney inflammation, as determined by protein array, intensified with prolonged exposure to the lowest concentrations of La₂O₃ NPs. In contrast, higher doses initially caused inflammation that subsided over time. Along with the disruption of mineral balance detected by Inductively Coupled Plasma Mass spectrometry (ICP-MS) (specifically the loss of Ca), we believe these factors are the main contributors to nephrotoxicity, the adverse effects of La₂O₃ NPs releasing free La³⁺ ions, which mimic calcium-activating ROS production that worsens at lower concentrations due to their reduced aggregation and enhanced ability to penetrate the cell membrane. However, further studies must confirm whether these effects result from direct nanoparticle circulation in the bloodstream or secondary toxicity mechanisms.
氧化镧纳米颗粒(La₂O₃ NPs)具有独特的电子特性。La₂O₃ NPs使用的增加提高了暴露风险,可能导致生物蓄积和代谢紊乱。本研究考察了以60、150和300 mg/kg的剂量腹腔注射(i.p)14天和35天的La₂O₃ NPs对小鼠肾脏的影响。结果表明,超氧化物歧化酶(SOD)基因表达和血浆谷胱甘肽(GSH)水平存在变化,且与纳米颗粒剂量呈负相关。炎症标志物一氧化氮合酶2(NOS2)转录与纳米颗粒剂量之间存在强正相关,证实了基于浓度的促炎作用。肾损伤分子-1(KIM-1)、尿酸、尿素、碱性磷酸酶(ALP)、谷丙转氨酶(ALT)和谷草转氨酶(AST)显著升高,尤其是在较低的纳米颗粒剂量下,表明肾脏和肝脏功能障碍。此外,通过蛋白质阵列测定的肾脏炎症标志物随着长时间暴露于最低浓度的La₂O₃ NPs而加剧。相比之下,较高剂量最初会引起炎症,但随着时间的推移会消退。除了通过电感耦合等离子体质谱(ICP-MS)检测到的矿物质平衡破坏(特别是钙的流失)外,我们认为这些因素是肾毒性的主要原因,即La₂O₃ NPs释放游离La³⁺离子的不利影响,这些离子模拟钙激活活性氧的产生,由于其聚集减少和穿透细胞膜能力增强,在较低浓度下情况会更糟。然而,进一步的研究必须证实这些影响是由纳米颗粒在血液中的直接循环还是继发毒性机制导致的。
Arch Ital Urol Androl. 2025-6-30
Cochrane Database Syst Rev. 2005-7-20
Cochrane Database Syst Rev. 2020-10-19
Cochrane Database Syst Rev. 2023-1-13
Cochrane Database Syst Rev. 2022-11-17
Cochrane Database Syst Rev. 2018-2-6
Cochrane Database Syst Rev. 2023-2-8
Environ Sci Pollut Res Int. 2024-3
Exploration (Beijing). 2023-7-20
Biomed Pharmacother. 2023-12-31
Kidney Blood Press Res. 2023