Suppr超能文献

使用卷积神经网络自动分割超声引导下横断胸段平面阻滞

Automatic Segmentation of Ultrasound-Guided Transverse Thoracic Plane Block Using Convolutional Neural Networks.

作者信息

Liu Wancheng, Ma Xinwei, Han Xiaolin, Yu Jie, Zhang Bowen, Liu Linjie, Liu Yang, Chu Fengyu, Liu Yucheng, Wei Shijing, Li Bin, Tang Zhenchao, Jiang Jingying, Wang Qiang

机构信息

School of Engineering Medicine, Beihang University, No. 37, Xueyuan Road, Beijing, 100191, China.

Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China.

出版信息

J Imaging Inform Med. 2025 Jun 6. doi: 10.1007/s10278-025-01565-9.

Abstract

Ultrasound-guided transverse thoracic plane (TTP) block has been shown to be highly effective in relieving postoperative pain in a variety of surgeries involving the anterior chest wall. Accurate identification of the target structure on ultrasound images is key to the successful implementation of TTP block. Nevertheless, the complexity of anatomical structures in the targeted blockade area coupled with the potential for adverse clinical incidents presents considerable challenges, particularly for anesthesiologists who are less experienced. This study applied deep learning methods to TTP block and developed a deep learning model to achieve real-time region segmentation in ultrasound to assist doctors in the accurate identification of the target nerve. Using 2329 images from 155 patients, we successfully segmented key structures associated with TTP areas and nerve blocks, including the transversus thoracis muscle, lungs, and bones. The achieved IoU (Intersection over Union) scores are 0.7272, 0.9736, and 0.8244 in that order. Recall metrics were 0.8305, 0.9896, and 0.9336 respectively, whilst Dice coefficients reached 0.8421, 0.9866, and 0.9037, particularly with an accuracy surpassing 97% in the identification of perilous lung regions. The real-time segmentation frame rate of the model for ultrasound video was as high as 42.7 fps, thus meeting the exigencies of performing nerve blocks under real-time ultrasound guidance in clinical practice. This study introduces TTP-Unet, a deep learning model specifically designed for TTP block, capable of automatically identifying crucial anatomical structures within ultrasound images of TTP block, thereby offering a practicable solution to attenuate the clinical difficulty associated with TTP block technique.

摘要

超声引导下横胸平面(TTP)阻滞已被证明在缓解涉及前胸壁的各种手术的术后疼痛方面非常有效。在超声图像上准确识别目标结构是成功实施TTP阻滞的关键。然而,目标阻滞区域解剖结构的复杂性以及潜在的不良临床事件带来了相当大的挑战,特别是对于经验较少的麻醉医生而言。本研究将深度学习方法应用于TTP阻滞,并开发了一种深度学习模型,以实现超声中的实时区域分割,协助医生准确识别目标神经。我们使用来自155名患者的2329张图像,成功分割了与TTP区域和神经阻滞相关的关键结构,包括胸横肌、肺和骨骼。得到的交并比(IoU)分数依次为0.7272、0.9736和0.8244。召回指标分别为0.8305、0.9896和0.9336,而Dice系数达到0.8421、0.9866和0.9037,特别是在危险肺区域的识别中准确率超过97%。该模型对超声视频的实时分割帧率高达42.7帧/秒,从而满足了临床实践中在实时超声引导下进行神经阻滞的紧急需求。本研究引入了TTP-Unet,这是一种专门为TTP阻滞设计的深度学习模型,能够自动识别TTP阻滞超声图像中的关键解剖结构,从而为减轻与TTP阻滞技术相关的临床困难提供了一种可行的解决方案。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验