Ferber Dyke, El Nahhas Omar S M, Wölflein Georg, Wiest Isabella C, Clusmann Jan, Leßmann Marie-Elisabeth, Foersch Sebastian, Lammert Jacqueline, Tschochohei Maximilian, Jäger Dirk, Salto-Tellez Manuel, Schultz Nikolaus, Truhn Daniel, Kather Jakob Nikolas
Department of Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany.
Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany.
Nat Cancer. 2025 Jun 6. doi: 10.1038/s43018-025-00991-6.
Clinical decision-making in oncology is complex, requiring the integration of multimodal data and multidomain expertise. We developed and evaluated an autonomous clinical artificial intelligence (AI) agent leveraging GPT-4 with multimodal precision oncology tools to support personalized clinical decision-making. The system incorporates vision transformers for detecting microsatellite instability and KRAS and BRAF mutations from histopathology slides, MedSAM for radiological image segmentation and web-based search tools such as OncoKB, PubMed and Google. Evaluated on 20 realistic multimodal patient cases, the AI agent autonomously used appropriate tools with 87.5% accuracy, reached correct clinical conclusions in 91.0% of cases and accurately cited relevant oncology guidelines 75.5% of the time. Compared to GPT-4 alone, the integrated AI agent drastically improved decision-making accuracy from 30.3% to 87.2%. These findings demonstrate that integrating language models with precision oncology and search tools substantially enhances clinical accuracy, establishing a robust foundation for deploying AI-driven personalized oncology support systems.
肿瘤学中的临床决策很复杂,需要整合多模态数据和多领域专业知识。我们开发并评估了一种自主临床人工智能(AI)代理,它利用GPT-4和多模态精准肿瘤学工具来支持个性化临床决策。该系统整合了视觉变换器,用于从组织病理学切片中检测微卫星不稳定性以及KRAS和BRAF突变;MedSAM用于放射图像分割;还有基于网络的搜索工具,如OncoKB、PubMed和谷歌。在20个真实的多模态患者病例上进行评估时,该AI代理以87.5%的准确率自主使用适当工具,在91.0%的病例中得出正确的临床结论,并且在75.5%的情况下准确引用了相关肿瘤学指南。与单独使用GPT-4相比,集成的AI代理将决策准确率从30.3%大幅提高到87.2%。这些发现表明,将语言模型与精准肿瘤学和搜索工具相结合可显著提高临床准确性,为部署人工智能驱动的个性化肿瘤学支持系统奠定了坚实基础。
J Med Internet Res. 2025-6-23
J Med Internet Res. 2024-10-30
Cochrane Database Syst Rev. 2024-10-17
Cancer. 2025-8-15
medRxiv. 2025-8-26
Int J Mol Sci. 2025-8-2
NPJ Artif Intell. 2025
J Healthc Inform Res. 2025-6-14
JCO Precis Oncol. 2024-10
Nature. 2024-10
Nat Commun. 2024-2-21
NPJ Precis Oncol. 2024-1-30
Nat Commun. 2024-1-22