文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种用于肿瘤学临床决策的自主人工智能代理的开发与验证。

Development and validation of an autonomous artificial intelligence agent for clinical decision-making in oncology.

作者信息

Ferber Dyke, El Nahhas Omar S M, Wölflein Georg, Wiest Isabella C, Clusmann Jan, Leßmann Marie-Elisabeth, Foersch Sebastian, Lammert Jacqueline, Tschochohei Maximilian, Jäger Dirk, Salto-Tellez Manuel, Schultz Nikolaus, Truhn Daniel, Kather Jakob Nikolas

机构信息

Department of Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany.

Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany.

出版信息

Nat Cancer. 2025 Jun 6. doi: 10.1038/s43018-025-00991-6.


DOI:10.1038/s43018-025-00991-6
PMID:40481323
Abstract

Clinical decision-making in oncology is complex, requiring the integration of multimodal data and multidomain expertise. We developed and evaluated an autonomous clinical artificial intelligence (AI) agent leveraging GPT-4 with multimodal precision oncology tools to support personalized clinical decision-making. The system incorporates vision transformers for detecting microsatellite instability and KRAS and BRAF mutations from histopathology slides, MedSAM for radiological image segmentation and web-based search tools such as OncoKB, PubMed and Google. Evaluated on 20 realistic multimodal patient cases, the AI agent autonomously used appropriate tools with 87.5% accuracy, reached correct clinical conclusions in 91.0% of cases and accurately cited relevant oncology guidelines 75.5% of the time. Compared to GPT-4 alone, the integrated AI agent drastically improved decision-making accuracy from 30.3% to 87.2%. These findings demonstrate that integrating language models with precision oncology and search tools substantially enhances clinical accuracy, establishing a robust foundation for deploying AI-driven personalized oncology support systems.

摘要

肿瘤学中的临床决策很复杂,需要整合多模态数据和多领域专业知识。我们开发并评估了一种自主临床人工智能(AI)代理,它利用GPT-4和多模态精准肿瘤学工具来支持个性化临床决策。该系统整合了视觉变换器,用于从组织病理学切片中检测微卫星不稳定性以及KRAS和BRAF突变;MedSAM用于放射图像分割;还有基于网络的搜索工具,如OncoKB、PubMed和谷歌。在20个真实的多模态患者病例上进行评估时,该AI代理以87.5%的准确率自主使用适当工具,在91.0%的病例中得出正确的临床结论,并且在75.5%的情况下准确引用了相关肿瘤学指南。与单独使用GPT-4相比,集成的AI代理将决策准确率从30.3%大幅提高到87.2%。这些发现表明,将语言模型与精准肿瘤学和搜索工具相结合可显著提高临床准确性,为部署人工智能驱动的个性化肿瘤学支持系统奠定了坚实基础。

相似文献

[1]
Development and validation of an autonomous artificial intelligence agent for clinical decision-making in oncology.

Nat Cancer. 2025-6-6

[2]
AI in Medical Questionnaires: Innovations, Diagnosis, and Implications.

J Med Internet Res. 2025-6-23

[3]
Perspectives of Health Care Professionals on the Use of AI to Support Clinical Decision-Making in the Management of Multiple Long-Term Conditions: Interview Study.

J Med Internet Res. 2025-7-4

[4]
Artificial intelligence entering the pathology arena in oncology: current applications and future perspectives.

Ann Oncol. 2025-4-28

[5]
Health Care Professionals' Experience of Using AI: Systematic Review With Narrative Synthesis.

J Med Internet Res. 2024-10-30

[6]
AI-Driven Integrated System for Burn Depth Prediction With Electronic Medical Records: Algorithm Development and Validation.

JMIR Med Inform. 2025-8-15

[7]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[8]
Comparison of ChatGPT and Internet Research for Clinical Research and Decision-Making in Occupational Medicine: Randomized Controlled Trial.

JMIR Form Res. 2025-5-20

[9]
Artificial intelligence for diagnosing exudative age-related macular degeneration.

Cochrane Database Syst Rev. 2024-10-17

[10]
Artificial intelligence across the cancer care continuum.

Cancer. 2025-8-15

引用本文的文献

[1]
AI Agents in Clinical Medicine: A Systematic Review.

medRxiv. 2025-8-26

[2]
Capacity of Understanding the Future Approaches in Cancer Treatment by Multiple Models of Artificial Intelligence.

J Cancer Educ. 2025-8-15

[3]
Omics-Mediated Treatment for Advanced Prostate Cancer: Moving Towards Precision Oncology.

Int J Mol Sci. 2025-8-2

[4]
Implementing a context-augmented large language model to guide precision cancer medicine.

medRxiv. 2025-7-24

[5]
Large language models for disease diagnosis: a scoping review.

NPJ Artif Intell. 2025

本文引用的文献

[1]
: A Question Answering Benchmark with Long Clinical Documents.

J Healthc Inform Res. 2025-6-14

[2]
Expert-Guided Large Language Models for Clinical Decision Support in Precision Oncology.

JCO Precis Oncol. 2024-10

[3]
From whole-slide image to biomarker prediction: end-to-end weakly supervised deep learning in computational pathology.

Nat Protoc. 2025-1

[4]
A multimodal generative AI copilot for human pathology.

Nature. 2024-10

[5]
Large language models streamline automated machine learning for clinical studies.

Nat Commun. 2024-2-21

[6]
Almanac - Retrieval-Augmented Language Models for Clinical Medicine.

NEJM AI. 2024-2

[7]
Preoperative CT and survival data for patients undergoing resection of colorectal liver metastases.

Sci Data. 2024-2-6

[8]
New regulatory thinking is needed for AI-based personalised drug and cell therapies in precision oncology.

NPJ Precis Oncol. 2024-1-30

[9]
Segment anything in medical images.

Nat Commun. 2024-1-22

[10]
Validation of MSIntuit as an AI-based pre-screening tool for MSI detection from colorectal cancer histology slides.

Nat Commun. 2023-11-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索