文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

团队科学背景下开发统一研究工作流程的指南。

A guide to developing harmonized research workflows in a team science context.

作者信息

Ruiz Oscar E, Wagenaar Joost B, Mehta Bella, Ziogas Ilias, Swanson Lyndie, Worley Kim C, Cruz-Almeida Yenisel, Johnson Alisa J, Boline Jyl, Boccanfuso Jacqueline, Martone Maryann E, Haelterman Nele A

机构信息

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.

Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA.

出版信息

Exp Neurol. 2025 Jun 5;392:115333. doi: 10.1016/j.expneurol.2025.115333.


DOI:10.1016/j.expneurol.2025.115333
PMID:40482901
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12233188/
Abstract

Large, interdisciplinary team science initiatives are increasingly leveraged to uncover novel insights into complex scientific problems. Such projects typically aim to produce large, harmonized datasets that can be analyzed to yield breakthrough discoveries using cutting-edge scientific methods. Successfully harmonizing and integrating datasets generated by different technologies and research groups is a considerable task, which requires an extensive supportive framework that is built by all members involved. Such a data harmonization framework includes a shared language to communicate across teams and disciplines, harmonized methods and protocols, (meta)data standards and common data elements, and the appropriate infrastructure to support the framework's development and implementation. In addition, a supportive data harmonization framework also entails adopting processes to decide on which elements to harmonize and to help individual team members implement agreed-upon data workflows in their own laboratories/centers. Building an effective data harmonization framework requires buy-in, team building, and significant effort from all members involved. While the nature and individual elements of these frameworks are project-specific, some common challenges typically arise that are independent of the research questions, scientific techniques, or model systems involved. In this perspective, we build on our collective experiences as part of the REstoring JOINt health and function to reduce pain (RE-JOIN) Consortium to provide guidance for developing research-centered data collection and analysis pipelines that enable downstream integrated analyses within and across diverse teams.

摘要

大型跨学科团队科学计划越来越多地被用于揭示对复杂科学问题的新见解。此类项目通常旨在生成大型、统一的数据集,以便使用前沿科学方法进行分析,从而产生突破性发现。成功地协调和整合由不同技术和研究团队生成的数据集是一项艰巨的任务,这需要由所有相关成员构建一个广泛的支持框架。这样的数据协调框架包括一种跨团队和学科进行交流的共享语言、统一的方法和协议、(元)数据标准和通用数据元素,以及支持该框架开发和实施的适当基础设施。此外,一个支持性的数据协调框架还需要采用一些流程来决定协调哪些元素,并帮助单个团队成员在其自己的实验室/中心实施商定的数据工作流程。构建一个有效的数据协调框架需要所有相关成员的认同、团队建设以及巨大的努力。虽然这些框架的性质和个别元素因项目而异,但通常会出现一些与所涉及的研究问题、科学技术或模型系统无关的常见挑战。在此观点中,我们基于作为恢复关节健康与功能以减轻疼痛(RE-JOIN)联盟一部分的集体经验,为开发以研究为中心的数据收集和分析流程提供指导,这些流程能够在不同团队内部和跨团队进行下游综合分析。

相似文献

[1]
A guide to developing harmonized research workflows in a team science context.

Exp Neurol. 2025-6-5

[2]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[3]
MarkVCID cerebral small vessel consortium: I. Enrollment, clinical, fluid protocols.

Alzheimers Dement. 2021-4

[4]
Health professionals' experience of teamwork education in acute hospital settings: a systematic review of qualitative literature.

JBI Database System Rev Implement Rep. 2016-4

[5]
How equitable is the conduct of public health research? Findings across case studies from India and Australia.

Int J Equity Health. 2025-8-8

[6]
Short-Term Memory Impairment

2025-1

[7]
Sexual Harassment and Prevention Training

2025-1

[8]
Clinical and biobehavioral phenotypic assessments and data harmonization for the RE-JOIN research consortium: Recommendations for common data element selection.

Neurobiol Pain. 2024-8-22

[9]
Accreditation through the eyes of nurse managers: an infinite staircase or a phenomenon that evaporates like water.

J Health Organ Manag. 2025-6-30

[10]
How to Implement Digital Clinical Consultations in UK Maternity Care: the ARM@DA Realist Review.

Health Soc Care Deliv Res. 2025-5-21

本文引用的文献

[1]
Perceptual and technical barriers in sharing and formatting metadata accompanying omics studies.

Cell Genom. 2025-5-14

[2]
Clinical and biobehavioral phenotypic assessments and data harmonization for the RE-JOIN research consortium: Recommendations for common data element selection.

Neurobiol Pain. 2024-8-22

[3]
Ten simple rules for recognizing data and software contributions in hiring, promotion, and tenure.

PLoS Comput Biol. 2024-8-8

[4]
From Planning Stage Towards FAIR Data: A Practical Metadatasheet For Biomedical Scientists.

Sci Data. 2024-5-22

[5]
A minimal metadata set (MNMS) to repurpose nonclinical in vivo data for biomedical research.

Lab Anim (NY). 2024-3

[6]
A General Primer for Data Harmonization.

Sci Data. 2024-1-31

[7]
Advances and prospects for the Human BioMolecular Atlas Program (HuBMAP).

Nat Cell Biol. 2023-8

[8]
Ten simple rules for organizations to support research data sharing.

PLoS Comput Biol. 2023-6-15

[9]
How to build up big team science: a practical guide for large-scale collaborations.

R Soc Open Sci. 2023-6-7

[10]
Addressing barriers in FAIR data practices for biomedical data.

Sci Data. 2023-2-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索