Tan Jian, Taitz Jemma Justine, Ni Duan, Potier-Villette Camille, Pinget Gabriela, Pulpitel Tamara, Stanley Dragana, Nanan Ralph, Macia Laurence
Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia; School of Medical Sciences, Faculty of Medicine and Health, the University of Sydney, Sydney, NSW, Australia; Sydney Medical School Nepean, the University of Sydney, Sydney, NSW, Australia; Nepean Hospital, Nepean Blue Mountains Local Health District, Sydney, New South Wales, Australia.
Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia; School of Medical Sciences, Faculty of Medicine and Health, the University of Sydney, Sydney, NSW, Australia.
Mol Metab. 2025 Aug;98:102180. doi: 10.1016/j.molmet.2025.102180. Epub 2025 Jun 6.
The circadian clock regulates tissue-specific homeostasis, and its disruption is associated with metabolic disorders. Both host metabolic processes and the gut microbiota exhibit diurnal regulation, and both contribute to the maintenance of glucose homeostasis (Thaiss et al., 2014; Bishehsari et al., 2020; Frazier et al., 2023) [1-3]. However, how the gut microbiota and the circadian rhythm interplay to control host glucose homeostasis is not fully understood. Here, we identified gut microbiota-derived extracellular vesicles (MEV) as a potential peripheral Zeitgeber (time cue) for the hepatic circadian clock, controlling hepatic gluconeogenesis. Host feeding patterns influence the gut microbiota, driving the diurnal production of MEV. Gut MEV levels coincide with the activity of hepatic gluconeogenesis, with overnight fasting associated with increased production of MEV by gut bacteria. MEV directly activates hepatic gluconeogenesis and chronic increase in MEV exposure impairs glucose homeostasis in vivo. Our finding highlights a mechanism by which the gut microbiota has co-evolved with the host to support its glucose needs during periods of energy demands (such as during fasting or starvation). On the contrary, an abnormal increase in MEV production, leading to dysregulated gluconeogenesis, may underlie various glucose-associated disorders, such as type 2 or gestational diabetes. Together, our data reconcile the gut microbiota and circadian rhythm in the control of host glucose homeostasis and metabolic health.
昼夜节律时钟调节组织特异性稳态,其紊乱与代谢紊乱有关。宿主代谢过程和肠道微生物群均表现出昼夜调节,二者都有助于维持葡萄糖稳态(Thaiss等人,2014年;Bishehsari等人,2020年;Frazier等人,2023年)[1-3]。然而,肠道微生物群和昼夜节律如何相互作用以控制宿主葡萄糖稳态尚不完全清楚。在这里,我们确定肠道微生物群衍生的细胞外囊泡(MEV)是肝脏昼夜节律时钟的潜在外周授时因子(时间线索),可控制肝脏糖异生。宿主的进食模式会影响肠道微生物群,驱动MEV的昼夜产生。肠道MEV水平与肝脏糖异生的活性一致,夜间禁食与肠道细菌产生的MEV增加有关。MEV直接激活肝脏糖异生,体内MEV暴露的长期增加会损害葡萄糖稳态。我们的发现突出了一种机制,通过该机制肠道微生物群与宿主共同进化,以在能量需求期间(如禁食或饥饿期间)支持宿主的葡萄糖需求。相反,MEV产生的异常增加导致糖异生失调,可能是各种与葡萄糖相关疾病(如2型糖尿病或妊娠期糖尿病)的基础。总之,我们的数据协调了肠道微生物群和昼夜节律在控制宿主葡萄糖稳态和代谢健康方面的作用。