Suppr超能文献

通过视觉分析结合可教机器评估干细胞活力。

Assessment of Stem Cell Viability through Visual Analysis Coupled with Teachable Machine.

作者信息

Kim Chanhyung, Son Jisu, Chaudhary Dinesh, Park Yeon-Kyun, Cho Ji Hyeon, Ryu Dongryeol, Jeong Jee-Heon, Youn Jonghee

机构信息

Department of Computer Engineering, Yeungnam University, Gyeongsan, Korea.

Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, Korea.

出版信息

Int J Stem Cells. 2025 Aug 30;18(3):311-319. doi: 10.15283/ijsc24105. Epub 2025 Jun 9.

Abstract

Cell viability is an indispensable aspect of cells in the field of drug discovery, cell biology, and biomedical research to assess the physiological conditions of cells such as healthiness, functionality, survivability, etc. Recently, there have been several methods for determining the cell viability through either cell staining with trypan blue and acridine orange, propidium iodide, calcein-AM, etc., or colorimetric assays such as cell counting kit-8 assay. However, these methods have some limitations like time-consuming, expensive, unstable, individual variability, etc. Even present artificial intelligence software such as QuPath, ImageJ, etc., can only determine the cell viability after cell staining. Therefore, we attempted to determine whether cells are alive or not depending on the visual characteristics of an individual cell using Teachable Machine, a web-based artificial intelligence tool provided by Google. Labeling work to assign correct answers to learning data consumes a lot of time and human costs because it is usually done manually. To solve this problem, labeling was automated by recognizing and extracting only individual cells from the image using the contour function to increase time efficiency. In addition, many datasets were created to evaluate and compare the performances of models. Based on the results, the model that showed the best performance showed an accuracy of more than 80%. In conclusion, this model could minimize analysis time, expenses, individual variability, etc., enhancing the efficacy and reproducibility of biological experiments in the fields of drug discovery, drug development, and biological research.

摘要

细胞活力是药物发现、细胞生物学和生物医学研究领域中评估细胞生理状况(如健康程度、功能、生存能力等)不可或缺的一个方面。最近,已经有几种通过细胞染色(如用台盼蓝、吖啶橙、碘化丙啶、钙黄绿素 - AM等)或比色法(如细胞计数试剂盒 - 8检测)来测定细胞活力的方法。然而,这些方法存在一些局限性,如耗时、昂贵、不稳定、个体差异等。即使是目前的人工智能软件,如QuPath、ImageJ等,也只能在细胞染色后测定细胞活力。因此,我们尝试使用谷歌提供的基于网络的人工智能工具“可教机器”,根据单个细胞的视觉特征来判断细胞是否存活。为学习数据分配正确答案的标注工作通常是手动完成的,这会消耗大量时间和人力成本。为了解决这个问题,通过使用轮廓函数从图像中识别并仅提取单个细胞来实现标注自动化,以提高时间效率。此外,还创建了许多数据集来评估和比较模型的性能。基于这些结果,表现最佳的模型准确率超过了80%。总之,该模型可以最大限度地减少分析时间、费用、个体差异等,提高药物发现、药物开发和生物研究领域生物实验的效率和可重复性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验