Suppr超能文献

基于对话的“幻灯片”深度学习用于稳健的阿尔茨海默病检测。

Deep learning of conversation-based 'filmstrips' for robust Alzheimer's disease detection.

作者信息

Trognon Arthur, Duman Coralie, Vittart Gwladys, Stortini Natacha, Mahdar-Recorbet Loann, Altakroury Hamza

机构信息

CLINICOG, Nancy, France.

Faculty of Arts and Humanities Campus, Lorraine University, Nancy, France.

出版信息

NPJ Aging. 2025 Aug 29;11(1):77. doi: 10.1038/s41514-025-00267-4.

Abstract

Early detection of Alzheimer's disease remains complex and costly despite advancements in neurobiological markers. We propose an innovative approach based on the topological and kinetic analysis of verbal exchanges to distinguish patients from healthy individuals. Without requiring full transcription, we leverage a convolutional network capable of identifying discursive patterns indicative of cognitive impairments. Our experiments, conducted with 80 participants, demonstrate performance levels exceeding 95% in cross-validation, comparable to computational approaches relying on biological markers. This robust and minimally invasive methodology could be easily integrated into clinical protocols, enhancing current diagnostics. It also holds the promise of cost-effectively extending monitoring to other neurodegenerative or psychiatric diseases.

摘要

尽管神经生物学标志物取得了进展,但阿尔茨海默病的早期检测仍然复杂且成本高昂。我们提出了一种基于言语交流的拓扑和动力学分析的创新方法,以区分患者和健康个体。无需完整转录,我们利用一个卷积网络来识别指示认知障碍的话语模式。我们对80名参与者进行的实验表明,交叉验证中的表现水平超过95%,与依赖生物标志物的计算方法相当。这种强大且微创的方法可以轻松整合到临床方案中,增强当前的诊断能力。它还有望以具有成本效益的方式将监测扩展到其他神经退行性疾病或精神疾病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8abb/12397328/2e7b3eb6681f/41514_2025_267_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验