Suppr超能文献

KARNet:一种用于磁共振成像(MRI)图像中痴呆阶段检测的新型深度学习方法。

KARNet: A Novel Deep-Learning Approach for Dementia Stage Detection in MRI Images.

作者信息

Zhao Wenlong, Mubonanyikuzo Vivens, Zhou Liang, Guo Jingzhen, Saleem Asad, Liang Kaiyi, Komolafe Temitope E, Wu Tao

机构信息

Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, CHN.

Rehabilitation Department, The Affiliated Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, CHN.

出版信息

Cureus. 2025 May 6;17(5):e83548. doi: 10.7759/cureus.83548. eCollection 2025 May.

Abstract

Introduction Accurate detection and staging of dementia are crucial for early intervention and effective patient management. Magnetic resonance imaging (MRI) serves as a valuable diagnostic tool, and deep learning models have the potential to enhance its accuracy and efficiency. Objective This study introduces KARNet, a novel deep-learning framework that integrates the Kolmogorov-Arnold network (KAN) architecture with a modified residual neural network (ResNet-18) and principal component analysis (PCA) to classify four stages of dementia: non-demented, very mild dementia, mild dementia, and moderate dementia. Methods To optimize model performance, we employ transfer learning by modifying a pre-trained ResNet-18 as a feature extractor, followed by a KAN layer as the classifier. PCA is adopted to reduce training time and computational complexity. Additionally, an ablation study and hyperparameter optimization are conducted to evaluate the robustness of the proposed model and improve performance. Results Experimental results demonstrate that KARNet achieves a classification accuracy of 98.5%, outperforming the existing state-of-the-art models. Evaluation on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset confirms its effectiveness in enhancing classification accuracy and model reliability for dementia staging. Conclusion The findings suggest that KARNet is a promising deep-learning framework for the early diagnosis and monitoring of dementia stages using MRI, offering a potential advancement in automated dementia assessment.

摘要

引言

痴呆症的准确检测和分期对于早期干预和有效的患者管理至关重要。磁共振成像(MRI)是一种有价值的诊断工具,而深度学习模型有潜力提高其准确性和效率。

目的

本研究介绍了KARNet,这是一种新颖的深度学习框架,它将柯尔莫哥洛夫 - 阿诺德网络(KAN)架构与改进的残差神经网络(ResNet - 18)和主成分分析(PCA)相结合,以对痴呆症的四个阶段进行分类:非痴呆、极轻度痴呆、轻度痴呆和中度痴呆。

方法

为了优化模型性能,我们采用迁移学习,将预训练的ResNet - 18修改为特征提取器,随后使用KAN层作为分类器。采用PCA来减少训练时间和计算复杂度。此外,还进行了消融研究和超参数优化,以评估所提出模型的稳健性并提高性能。

结果

实验结果表明,KARNet实现了98.5%的分类准确率,优于现有的最先进模型。在阿尔茨海默病神经影像倡议(ADNI)数据集上的评估证实了其在提高痴呆症分期分类准确率和模型可靠性方面的有效性。

结论

研究结果表明,KARNet是一种有前途的深度学习框架,可用于使用MRI对痴呆症阶段进行早期诊断和监测,为自动化痴呆症评估提供了潜在的进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0105/12141588/4b11e6d8a623/cureus-0017-00000083548-i01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验