Ding Peng
Statistics University of California, Berkeley.
Obs Stud. 2025 Apr 11;11(1):27-40. doi: 10.1353/obs.2025.a956839. eCollection 2025.
Aronow et al. (2024) provide a great service to the causal inference community by delineating the key results in Robins and Ritov (1997). They show that randomized controlled trials (RCTs) ensure much stronger statistical inference than unconfounded observational studies even though nonparametric identification is identical in both settings. These results are in sharp contrast to the claim in Pearl and Mackenzie (2018) that RCTs are not the gold standard of causal analysis. Pearl and Mackenzie's (2018) claim is false and misleading for empirical researchers who want to infer causal effects based on data with finite sample sizes. I will further review what randomization can and cannot guarantee more broadly. In particular, I will highlight the value of randomization-based inference in RCTs, the limit of randomization alone for more complicated causal inference questions, and the importance of sensitivity analysis in observational studies.
阿诺诺夫等人(2024年)通过阐述罗宾斯和里托夫(1997年)的关键研究成果,为因果推断领域提供了一项重要服务。他们表明,随机对照试验(RCT)比无混杂因素的观察性研究能确保更强有力的统计推断,尽管在这两种情况下非参数识别是相同的。这些结果与珀尔和麦肯齐(2018年)所声称的RCT不是因果分析的黄金标准形成了鲜明对比。珀尔和麦肯齐(2018年)的说法是错误的,并且会误导那些想要基于有限样本量的数据推断因果效应的实证研究人员。我将更广泛地进一步审视随机化能够保证和不能保证的内容。特别是,我将强调基于随机化的推断在RCT中的价值、仅靠随机化对于更复杂的因果推断问题的局限性,以及敏感性分析在观察性研究中的重要性。