Suppr超能文献

随机化能够保证和不能保证的事情。

What randomization can and cannot guarantee.

作者信息

Ding Peng

机构信息

Statistics University of California, Berkeley.

出版信息

Obs Stud. 2025 Apr 11;11(1):27-40. doi: 10.1353/obs.2025.a956839. eCollection 2025.

Abstract

Aronow et al. (2024) provide a great service to the causal inference community by delineating the key results in Robins and Ritov (1997). They show that randomized controlled trials (RCTs) ensure much stronger statistical inference than unconfounded observational studies even though nonparametric identification is identical in both settings. These results are in sharp contrast to the claim in Pearl and Mackenzie (2018) that RCTs are not the gold standard of causal analysis. Pearl and Mackenzie's (2018) claim is false and misleading for empirical researchers who want to infer causal effects based on data with finite sample sizes. I will further review what randomization can and cannot guarantee more broadly. In particular, I will highlight the value of randomization-based inference in RCTs, the limit of randomization alone for more complicated causal inference questions, and the importance of sensitivity analysis in observational studies.

摘要

阿诺诺夫等人(2024年)通过阐述罗宾斯和里托夫(1997年)的关键研究成果,为因果推断领域提供了一项重要服务。他们表明,随机对照试验(RCT)比无混杂因素的观察性研究能确保更强有力的统计推断,尽管在这两种情况下非参数识别是相同的。这些结果与珀尔和麦肯齐(2018年)所声称的RCT不是因果分析的黄金标准形成了鲜明对比。珀尔和麦肯齐(2018年)的说法是错误的,并且会误导那些想要基于有限样本量的数据推断因果效应的实证研究人员。我将更广泛地进一步审视随机化能够保证和不能保证的内容。特别是,我将强调基于随机化的推断在RCT中的价值、仅靠随机化对于更复杂的因果推断问题的局限性,以及敏感性分析在观察性研究中的重要性。

相似文献

1
What randomization can and cannot guarantee.随机化能够保证和不能保证的事情。
Obs Stud. 2025 Apr 11;11(1):27-40. doi: 10.1353/obs.2025.a956839. eCollection 2025.
7
Identification in Causal Models With Hidden Variables.含隐藏变量的因果模型中的识别
J Soc Fr Statistique (2009). 2020 Jul;161(1):91-119. Epub 2020 Jun 30.
8
9
Priors and Propensity Scores in Bayesian Causal Inference.贝叶斯因果推断中的先验概率和倾向得分
Obs Stud. 2025 Apr 11;11(1):47-60. doi: 10.1353/obs.2025.a956841. eCollection 2025.

本文引用的文献

1
AVERAGE TREATMENT EFFECTS IN THE PRESENCE OF UNKNOWN INTERFERENCE.存在未知干扰时的平均治疗效果。
Ann Stat. 2021 Apr;49(2):673-701. doi: 10.1214/20-aos1973. Epub 2021 Apr 2.
2
Sensitivity Analysis Without Assumptions.无假设的敏感性分析。
Epidemiology. 2016 May;27(3):368-77. doi: 10.1097/EDE.0000000000000457.
4
Randomization inference for treatment effects on a binary outcome.二元结局治疗效果的随机化推断
Stat Med. 2015 Mar 15;34(6):924-35. doi: 10.1002/sim.6384. Epub 2014 Dec 4.
7
Toward Causal Inference With Interference.迈向具有干扰性的因果推断
J Am Stat Assoc. 2008 Jun;103(482):832-842. doi: 10.1198/016214508000000292.
10
Principal stratification in causal inference.因果推断中的主分层
Biometrics. 2002 Mar;58(1):21-9. doi: 10.1111/j.0006-341x.2002.00021.x.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验