Suppr超能文献

用于精确癌症诊断和治疗监测的细胞外囊泡高效代谢指纹图谱分析。

Efficient metabolic fingerprinting profiling of extracellular vesicles for precise cancer diagnosis and treatment monitoring.

作者信息

Wang Shurong, Liu Dongmei, Wang Ruoke, Zou Yan, Tian Tongtong, Huang Xuedong, Fang Xiaoni, Liu Baohong

机构信息

Department of Chemistry, Shanghai Stomatological Hospital, School of Pharmacy, Institute of Biomedical Sciences, Fudan University, Shanghai, 200438, China.

Department of Pharmacy, Qingdao Municipal Hospital, Qingdao, 266001, China.

出版信息

Mater Today Bio. 2025 May 12;32:101857. doi: 10.1016/j.mtbio.2025.101857. eCollection 2025 Jun.

Abstract

Breast cancer is the most prevalent cancer among women globally, underscoring the need for accurate prognostic and predictive biomarkers. Extracellular vesicles (EVs), carrying bioactive molecules such as proteins and miRNAs, have emerged as promising candidates for non-invasive liquid biopsy. However, their metabolic profiles remain underexplored. Here, we present a hybrid gold matrix (AuM), composed of gold nanospheres and nanorods, for EVs metabolome profiling via matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). The AuM enhances ionization efficiency through its large surface area and anisotropic optical properties, enabling sensitive analysis with just 100 nL of serum and rapid processing time. Using this platform, we identified six potential metabolic biomarkers distinguishing early-stage breast cancer (BC) patients from healthy donors (HD). For treatment monitoring, serum-derived EVs from breast cancer mouse models treated with doxorubicin hydrochloride were analyzed, and a three-metabolite panel achieved 100 % accuracy in evaluating therapeutic response. This study reveals the metabolic heterogeneity of EVs and demonstrates the utility of EVs metabolomics in both diagnosis and treatment monitoring. Our findings bridge the gap between EVs-based laboratory research and clinical application, offering a promising tool for advancing precision medicine in breast cancer management.

摘要

乳腺癌是全球女性中最常见的癌症,这凸显了对准确的预后和预测生物标志物的需求。携带蛋白质和微小RNA等生物活性分子的细胞外囊泡(EVs)已成为非侵入性液体活检的有希望的候选者。然而,它们的代谢谱仍未得到充分探索。在这里,我们提出了一种由金纳米球和纳米棒组成的混合金基质(AuM),用于通过基质辅助激光解吸/电离飞行时间质谱(MALDI-TOF MS)对EVs进行代谢组分析。AuM通过其大表面积和各向异性光学特性提高了电离效率,仅需100 nL血清就能进行灵敏分析,且处理时间短。利用这个平台,我们鉴定出了六种潜在的代谢生物标志物,可区分早期乳腺癌(BC)患者和健康供体(HD)。为了进行治疗监测,我们分析了用盐酸阿霉素治疗的乳腺癌小鼠模型血清来源的EVs,一个包含三种代谢物的组合在评估治疗反应方面达到了100%的准确率。这项研究揭示了EVs的代谢异质性,并证明了EVs代谢组学在诊断和治疗监测中的实用性。我们的发现弥合了基于EVs的实验室研究与临床应用之间的差距,为推进乳腺癌管理中的精准医学提供了一个有前景的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c42/12141543/d51a99f3503f/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验