Miranda-Balbuena Diego, Ramil-Bouzas Alba, Doldán-Mata Naiara, López-Seijas Junquera, Fafián-Labora Juan, Lamas-Criado Ibán, Caeiro-Rey Jose-Ramón, Fernández-Trillo Paco, Rey-Rico Ana
Centro Interdisciplinar de Química e Bioloxía - CICA, Universidade da Coruña, 15071 A Coruña, Spain.
Departamento de Biología, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain.
Mol Ther Nucleic Acids. 2025 Apr 29;36(2):102551. doi: 10.1016/j.omtn.2025.102551. eCollection 2025 Jun 10.
Mesenchymal stem cell (MSC) gene therapy holds significant potential for regenerative medicine, especially for treating conditions such as cartilage damage. Still, finding appropriate vectors to achieve a safe and efficient gene delivery remains a challenge. This study explores the development of novel polyethyleneimine (PEI)-based polymers functionalized with both cationic guanidinium and hydrophobic aldehyde groups for efficient transfection to human MSCs (hMSCs). PEI was chemically modified with guanidinium-(3-guanidin-N-(3-oxopropyl)propanamide [T1]) and 1-(4-formylphenyl)guanidine [T2]) and hydrophobic (octanal [T3A] and dodecanal [T3B]) aldehydes. Polyplexes were formed by the complexation of PEI-aldehyde conjugates with plasmids encoding for β-galactosidase (p), green fluorescent protein (pGFP), and the chondrogenic transcription factor SOX9 (p), and demonstrated efficient DNA complexation and protection. Among the formulations, PEI functionalized with the cationic (T2) and hydrophobic (T3A) aldehydes (PEIT2T3A) exhibited a superior transfection efficiency and biocompatibility, significantly enhancing the expression of target genes in hMSCs. Importantly, PEIT2T3A/p polyplexes successfully promoted the chondrogenic differentiation of hMSCs, as evidenced by the increased expression of chondrogenic markers (SOX9, type-II collagen [COLII], and aggrecan [ACAN]) and proteoglycan deposition in aggregate cultures, while mitigating the low cell viability found with unmodified PEI. These findings suggest that PEIT2T3A is a promising non-viral vector for targeted gene delivery and hMSC-based regenerative medicine applications.
间充质干细胞(MSC)基因治疗在再生医学领域具有巨大潜力,尤其是在治疗软骨损伤等病症方面。然而,找到合适的载体以实现安全高效的基因传递仍是一项挑战。本研究探索了新型聚乙烯亚胺(PEI)基聚合物的开发,该聚合物用阳离子胍基和疏水醛基进行功能化修饰,以实现对人MSC(hMSC)的高效转染。用胍基 -(3 - 胍基 - N -(3 - 氧代丙基)丙酰胺 [T1])和1 -(4 - 甲酰基苯基)胍 [T2])以及疏水醛(辛醛 [T3A] 和十二醛 [T3B])对PEI进行化学修饰。通过将PEI - 醛缀合物与编码β - 半乳糖苷酶(p)、绿色荧光蛋白(pGFP)和成软骨转录因子SOX9(p)的质粒络合形成多聚体,并证明其具有高效的DNA络合和保护作用。在这些制剂中,用阳离子(T2)和疏水(T3A)醛功能化的PEI(PEIT2T3A)表现出卓越的转染效率和生物相容性,显著增强了hMSC中靶基因的表达。重要的是,PEIT2T3A / p多聚体成功促进了hMSC的成软骨分化,这在聚集培养物中通过成软骨标志物(SOX9、II型胶原蛋白 [COLII] 和聚集蛋白聚糖 [ACAN])表达增加以及蛋白聚糖沉积得到证明,同时减轻了未修饰PEI所导致的低细胞活力。这些发现表明,PEIT2T3A是一种有前景的非病毒载体,可用于靶向基因传递和基于hMSC的再生医学应用。