Suppr超能文献

使用切空间脑网络的功能连接组指纹识别的功效

Efficacy of functional connectome fingerprinting using tangent-space brain networks.

作者信息

Curic Davor, Kalasapura Venugopal Krishna Sudhanva, Davidsen Jörn

机构信息

Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada.

Department of Physics, Indian Institute of Science, Bangalore, India.

出版信息

Netw Neurosci. 2025 Apr 30;9(2):549-568. doi: 10.1162/netn_a_00445. eCollection 2025.

Abstract

Functional connectomes (FCs) are estimations of brain region interaction derived from brain activity, often obtained from functional magnetic resonance imaging recordings. Quantifying the distance between FCs is important for understanding the relation between behavior, disorders, disease, and changes in connectivity. Recently, tangent space projections, which account for the curvature of the mathematical space of FCs, have been proposed for calculating FC distances. We compare the efficacy of this approach relative to the traditional method in the context of subject identification using the Midnight Scan Club dataset in order to study resting-state and task-based subject discriminability. The tangent space method is found to universally outperform the traditional method. We also focus on the subject identification efficacy of subnetworks. Certain subnetworks are found to outperform others, a dichotomy that largely follows the "control" and "processing" categorization of resting-state networks, and relates subnetwork flexibility with subject discriminability. Identification efficacy is also modulated by tasks, though certain subnetworks appear task independent. The uniquely long recordings of the dataset also allow for explorations of resource requirements for effective subject identification. The tangent space method is found to universally require less data, making it well suited when only short recordings are available.

摘要

功能连接组(FCs)是根据大脑活动对脑区交互作用的估计,通常从功能磁共振成像记录中获取。量化功能连接组之间的距离对于理解行为、疾病、病症以及连接性变化之间的关系至关重要。最近,考虑到功能连接组数学空间曲率的切空间投影法已被提出用于计算功能连接组距离。我们在使用午夜扫描俱乐部数据集进行受试者识别的背景下,将这种方法与传统方法的有效性进行比较,以研究静息态和基于任务的受试者可区分性。结果发现切空间法普遍优于传统方法。我们还关注子网的受试者识别效果。发现某些子网比其他子网表现更好,这种二分法在很大程度上遵循静息态网络的“控制”和“处理”分类,并将子网灵活性与受试者可区分性联系起来。识别效果也受任务调节,不过某些子网似乎与任务无关。该数据集独特的长时间记录还允许探索有效识别受试者所需的资源。结果发现切空间法普遍需要的数据较少,因此在只有短记录可用时非常适用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c44b/12140576/a74a3c4cef7d/netn-9-2-549-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验