El-Sherbiny Gamal M, Shehata M E, Kalaba Mohamed H
Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
Biotechnol Rep (Amst). 2025 May 6;46:e00896. doi: 10.1016/j.btre.2025.e00896. eCollection 2025 Jun.
UNLABELLED: Antimicrobial resistance has increased alarmingly in recent years, with the World Health Organization identifying multidrug-resistant as a particular threat to global public health due to its extensive resistance profile and associated high mortality rates. While various metal nanoparticles have been explored as antimicrobial agents, the specific advantages of biosynthesized copper nanoparticles against MDR remain inadequately consolidated in the literature. OBJECTIVE: This review uniquely evaluates the emerging evidence for biosynthesized copper nanoparticles as a sustainable, cost-effective, and potentially alternative to conventional antibiotics against multidrug-resistant strains. METHODS: We systematically analyzed current literature on green synthesis methods for copper and copper oxide nanoparticles, their characterization techniques, antimicrobial mechanisms, and efficacy against multidrug-resistant , focusing on identifying knowledge gaps and future research directions. RESULTS: Unlike other metal nanoparticles, biosynthesized copper nanoparticles demonstrate significant antibacterial activity against multidrug-resistant through multiple simultaneous mechanisms that bacteria try to develop resistance against. Their unique physicochemical properties enable enhanced bacterial elimination compared to conventional antibiotics and other metal nanoparticles, with minimal toxicity to mammalian cells at therapeutic concentrations. Our analysis further reveals the considerable potential of these nanoparticles to overcome existing biological barriers in infection sites that limit conventional therapies. CONCLUSION: This broad assessment of biosynthesized copper nanoparticles shows strong potential as a therapy against MDR and provides a foundation for future research to address antimicrobial resistance where current treatments fail.
未标注:近年来,抗菌药物耐药性急剧增加,世界卫生组织将多重耐药菌确定为对全球公共卫生的一个特殊威胁,因其具有广泛的耐药谱以及相关的高死亡率。虽然各种金属纳米颗粒已被探索用作抗菌剂,但生物合成铜纳米颗粒针对多重耐药菌的具体优势在文献中仍未得到充分整合。 目的:本综述独特地评估了生物合成铜纳米颗粒作为一种可持续、具有成本效益且可能替代传统抗生素来对抗多重耐药菌菌株的新证据。 方法:我们系统地分析了当前关于铜和氧化铜纳米颗粒的绿色合成方法、其表征技术、抗菌机制以及对多重耐药菌的疗效的文献,重点是确定知识空白和未来的研究方向。 结果:与其他金属纳米颗粒不同,生物合成铜纳米颗粒通过多种细菌试图产生耐药性的同时发生的机制,对多重耐药菌表现出显著的抗菌活性。与传统抗生素和其他金属纳米颗粒相比,其独特的物理化学性质能够增强细菌清除效果,在治疗浓度下对哺乳动物细胞的毒性最小。我们的分析进一步揭示了这些纳米颗粒在克服感染部位限制传统疗法的现有生物屏障方面的巨大潜力。 结论:对生物合成铜纳米颗粒的这一广泛评估显示出作为对抗多重耐药菌疗法的强大潜力,并为未来在当前治疗失败的情况下解决抗菌药物耐药性问题的研究提供了基础。
Adv Drug Deliv Rev. 2013-7-24
ACS Appl Mater Interfaces. 2024-5-1
Artif Cells Nanomed Biotechnol. 2022-12
Front Bioeng Biotechnol. 2025-8-6
J Basic Microbiol. 2025-5
Nanomaterials (Basel). 2024-11-26
Dalton Trans. 2024-6-10