Li Yanguo, Yang Hui, Xu Jing, Ji Haijun, Wang Wencai, Wang Runguo, Wang Feng, Zhang Liqun
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
Shandong Linglong Tyre Co., Ltd., Zhaoyuan, Shandong 265406, P. R. China.
ACS Omega. 2025 May 17;10(21):22224-22234. doi: 10.1021/acsomega.5c02670. eCollection 2025 Jun 3.
As a high biobased synthetic rubber, an itaconate elastomer is critical for advancing sustainable tire manufacturing, thereby offering a viable solution to mitigate reliance on petrochemical feedstocks and curtail carbon emissions within the rubber industry. In this study, performance comparisons between two industrially available biobased itaconate elastomers (BIE) and commercial solution-polymerized styrene-butadiene rubber (SSBR) indicated that BIE/silica exhibited higher dry sliding/rolling friction coefficients. It is attributed to the superior frictional damping efficiency of side ester groups in BIE compared to styrene and vinyl moieties in SSBR. In addition, to address the inherent challenges of low cross-linking efficiency and network density caused by the molecular structure of BIE, an innovative dual cross-linking system was developed by combining amino-functionalized polysulfide (PDAS) with sulfur. This system simultaneously activated cross-linking reactions at both double bonds and diester groups, enabling efficient vulcanization of the elastomer. Systematic investigations were conducted to characterize the effects of the PDAS dosage on cross-linking density, filler dispersion, and dynamic/static mechanical properties. Validated with a high-performance tire formulation, BIE/silica with the dual-cross-linked system had reached the same level as SSBR/silica in terms of cross-linking density, mechanical properties (tensile strength: 17.4 MPa, elongation at break: 422%), and Akron abrasion resistance. It also showed balanced dynamic mechanical properties (tan δ = 0.744 at 0 °C and tan δ = 0.092 at 60 °C). These results provide data support and a technical path reference for the industrial application of BIE in green tire manufacturing.
作为一种高生物基合成橡胶,衣康酸酯弹性体对于推动可持续轮胎制造至关重要,从而为减轻橡胶行业对石化原料的依赖并减少碳排放提供了可行的解决方案。在本研究中,两种工业可用的生物基衣康酸酯弹性体(BIE)与商业溶液聚合丁苯橡胶(SSBR)之间的性能比较表明,BIE/二氧化硅表现出更高的干滑动/滚动摩擦系数。这归因于与SSBR中的苯乙烯和乙烯基部分相比,BIE中侧酯基具有卓越的摩擦阻尼效率。此外,为解决由BIE分子结构导致的低交联效率和网络密度的固有挑战,通过将氨基官能化多硫化物(PDAS)与硫磺相结合,开发了一种创新的双交联体系。该体系同时激活了双键和二酯基处的交联反应,实现了弹性体的高效硫化。开展了系统研究以表征PDAS用量对交联密度、填料分散以及动态/静态力学性能的影响。通过高性能轮胎配方验证,具有双交联体系的BIE/二氧化硅在交联密度、力学性能(拉伸强度:17.4 MPa,断裂伸长率:422%)和阿克隆耐磨性能方面已达到与SSBR/二氧化硅相同的水平。它还表现出平衡的动态力学性能(0°C时tan δ = 0.744,60°C时tan δ = 0.092)。这些结果为BIE在绿色轮胎制造中的工业应用提供了数据支持和技术路径参考。