Suppr超能文献

化学合成作用增强了高盐度微生物席中的净初级生产力和养分循环。

Chemosynthesis enhances net primary production and nutrient cycling in a hypersaline microbial mat.

作者信息

Ricci Francesco, Leung Pok Man, Hutchinson Tess, Nguyen-Dinh Thanh, Frank Alexander H, Hood Ashleigh van Smeerdijk, Salazar Vinícius W, Eate Vera, Wong Wei Wen, Cook Perran L M, Greening Chris, McClelland Harry

机构信息

Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.

Securing Antarctica's Environmental Future, Monash University, Clayton, VIC 3800, Australia.

出版信息

ISME J. 2025 Jan 2;19(1). doi: 10.1093/ismejo/wraf117.

Abstract

Photosynthetic microbial mats are macroscopic microbial ecosystems consisting of a wide array of functional groups and microenvironments arranged along variable redox gradients. Light energy ultimately drives primary production and a cascade of daisy-chained metabolisms. Heterotrophic members of these communities remineralise organic material, decreasing net primary production, and returning nutrients to the aqueous phase. However, reduced inorganic and one-carbon substrates such as trace gases and those released as metabolic byproducts in deeper anoxic regions of the mat, could theoretically also fuel carbon fixation, mitigating carbon loss from heterotrophy and enhancing net primary production. Here, we investigated the intricate metabolic synergies that sustain community nutrient webs in a biomineralising microbial mat from a hypersaline lake. We recovered 331 genomes spanning 40 bacterial and archaeal phyla that influence the biogeochemistry of these ecosystems. Phototrophy is a major metabolism found in 17% of the genomes, but over 50% encode enzymes to harness energy from inorganic substrates and 12% co-encode chemosynthetic carbon fixation pathways that use sulfide and hydrogen as electron donors. We experimentally demonstrated that the microbial community oxidises ferrous iron, ammonia, sulfide, and reduced trace gas substrates aerobically and anaerobically. Furthermore, carbon isotope assays revealed that diverse chemosynthetic pathways contribute significantly to carbon fixation and organic matter production alongside photosynthesis. Chemosynthesis in microbial mats results from a complex suite of spatially organised metabolic interactions and continuous nutrient cycling, which decouples carbon fixation from the diurnal cycle, and enhances the net primary production of these highly efficient ecosystems.

摘要

光合微生物垫是宏观的微生物生态系统,由沿可变氧化还原梯度排列的多种功能群和微环境组成。光能最终驱动初级生产和一系列链式代谢。这些群落中的异养成员使有机物质再矿化,降低净初级生产,并将养分返回水相。然而,在垫子较深的缺氧区域,还原态无机底物和一碳底物,如微量气体和作为代谢副产物释放的底物,理论上也可以为碳固定提供燃料,减轻异养造成的碳损失并提高净初级生产。在这里,我们研究了维持来自高盐湖的生物矿化微生物垫中群落营养网络的复杂代谢协同作用。我们获得了331个基因组,涵盖40个细菌和古菌门,它们影响这些生态系统的生物地球化学。光能营养是17%的基因组中发现的主要代谢方式,但超过50%的基因组编码从无机底物获取能量的酶,12%的基因组共同编码以硫化物和氢气作为电子供体的化学合成碳固定途径。我们通过实验证明,微生物群落可以在有氧和无氧条件下氧化亚铁、氨、硫化物和还原态微量气体底物。此外,碳同位素分析表明,除光合作用外,多种化学合成途径对碳固定和有机物质生产也有显著贡献。微生物垫中的化学合成源于一系列复杂的空间组织代谢相互作用和持续的养分循环,这使碳固定与昼夜循环脱钩,并提高了这些高效生态系统的净初级生产。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb35/12218205/97bcca05e1c6/wraf117f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验