Suppr超能文献

利用大量多样的细菌基因组数据集,通过基于聚合酶链反应的诊断方法来改进检测和鉴定。 (原文结尾处似乎表述不完整,缺少具体要检测和鉴定的内容)

Utilizing large and diverse bacterial genome datasets to improve the detection and identification of via PCR-based diagnostics.

作者信息

Ahlers Femke M, Litt David J, Jansen van Rensburg Melissa J, Bray James E, Jolley Keith A, Sheppard Carmen, Eletu Seyi, Coelho Juliana, Pichon Bruno, Harrison Odile B, Maiden Martin C J, Eyre David W, Fry Norman K, Brueggemann Angela B

机构信息

Nuffield Department of Population Health, University of Oxford, Oxford, UK.

Respiratory and Vaccine Preventable Bacteria Reference Unit, UK Health Security Agency, London, UK.

出版信息

Microb Genom. 2025 Jun;11(6). doi: 10.1099/mgen.0.001418.

Abstract

The accurate identification of (pneumococcus) is crucial for diagnostics and surveillance but is complicated by the use of molecular assays that may also detect non-pneumococcal (NPS) species. Therefore, the aim of this study was to use a combination of and analyses to evaluate PCR assays for the molecular detection and identification of pneumococci. A diverse dataset of over 9,300 pneumococcal and NPS genomes was investigated to determine the sensitivity and specificity of assays for seven recommended gene targets: , , , , Spn9802, SP2020 and Xisco. These findings were used to design new diagnostic assays for two targets, Xisco and SP2020. The new assays were evaluated using three sets of isolates, one of which was selected based upon evidence for sequence diversity from a second investigation of over 6,000 pneumococcal genomes sequenced by the United Kingdom Health Security Agency. Experimentally, the new Xisco and SP2020 assays were compared to published assays for and . The specificity was 100% (95% CI, 98.7-100%) across all assays. The sensitivity was 100% (95% CI, 98.5-100%) for , SP2020_new and the Xisco assays and 99.6% (95% CI, 97.8-100%) for . The new assays were found to be highly sensitive and specific and able to detect as few as two pneumococcal genome copies per quantitative PCR reaction. Overall, this study demonstrated the value of performing large-scale genomic analyses of diagnostic targets, followed by testing that was specifically designed to account for global pneumococcal population-level diversity.

摘要

肺炎球菌的准确鉴定对于诊断和监测至关重要,但由于使用的分子检测方法可能也会检测到非肺炎球菌(NPS)物种而变得复杂。因此,本研究的目的是结合[具体分析方法1]和[具体分析方法2]分析,以评估用于肺炎球菌分子检测和鉴定的聚合酶链反应(PCR)检测方法。研究了一个包含9300多个肺炎球菌和NPS基因组的多样数据集,以确定针对七个推荐基因靶点([基因靶点1]、[基因靶点2]、[基因靶点3]、[基因靶点4]、Spn9802、SP2020和Xisco)的检测方法的敏感性和特异性。这些结果被用于设计针对两个靶点(Xisco和SP2020)的新诊断检测方法。使用三组分离株对新检测方法进行了评估,其中一组是根据英国卫生安全局对6000多个肺炎球菌基因组进行的第二次测序调查中的序列多样性证据选择的。在实验中,将新的Xisco和SP2020检测方法与已发表的针对[其他基因靶点]的检测方法进行了比较。所有检测方法的特异性均为100%(95%置信区间,98.7 - 100%)。[基因靶点1]、SP2020_new和Xisco检测方法的敏感性为100%(95%置信区间,98.5 - 100%),[基因靶点2]检测方法的敏感性为99.6%(95%置信区间,97.8 - 100%)。发现新检测方法具有高度敏感性和特异性,并且每个定量PCR反应能够检测低至两个肺炎球菌基因组拷贝。总体而言,本研究证明了对诊断靶点进行大规模基因组分析的价值,随后进行专门设计以考虑全球肺炎球菌群体水平多样性的检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e994/12149409/41c479cd2cd6/mgen-11-01418-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验