Schwetlick Lisa, Reich Sebastian, Engbert Ralf
Department of Psychology, University of Potsdam, Potsdam, Germany.
École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
Biol Cybern. 2025 Jun 9;119(2-3):13. doi: 10.1007/s00422-025-01010-8.
Humans constantly move their eyes, even during visual fixations, where miniature (or fixational) eye movements occur involuntarily. Fixational eye movements comprise slow components (physiological drift and tremor) and fast components (microsaccades). The complex dynamics of physiological drift can be modeled qualitatively as a statistically self-avoiding random walk (SAW model, Engbert et al., 2011). In this study, we implement a data assimilation approach for the SAW model to explain statistics of fixational eye movements and microsaccades in experimental data obtained from high-resolution eye-tracking. We discuss and analyze the likelihood function for the SAW model, which allows us to apply Bayesian parameter estimation at the level of individual human observers. Based on model fitting, we find a relationship between the activation predicted by the SAW model and the occurrence of microsaccades. The model's latent activation relative to microsaccade onsets and offsets using experimental data lends support to the existence of a triggering mechanism for microsaccades. Our findings suggest that the SAW model can capture individual differences and serve as a tool for exploring the relationship between physiological drift and microsaccades as the two most essential components of fixational eye movements. Our results contribute to understanding individual variability in microsaccade behaviors and the role of fixational eye movements in visual information processing.
人类的眼睛一直在运动,即使在视觉注视期间也是如此,此时会发生不由自主的微小(或注视性)眼动。注视性眼动包括慢速成分(生理性漂移和震颤)和快速成分(微扫视)。生理性漂移的复杂动态可以定性地建模为统计自回避随机游走(SAW模型,Engbert等人,2011年)。在本研究中,我们为SAW模型实施了一种数据同化方法,以解释从高分辨率眼动追踪获得的实验数据中注视性眼动和微扫视的统计数据。我们讨论并分析了SAW模型的似然函数,这使我们能够在个体人类观察者层面应用贝叶斯参数估计。基于模型拟合,我们发现SAW模型预测的激活与微扫视的发生之间存在关系。使用实验数据,模型相对于微扫视起始和偏移的潜在激活支持了微扫视触发机制的存在。我们的研究结果表明,SAW模型可以捕捉个体差异,并作为探索生理性漂移和微扫视之间关系的工具,这两者是注视性眼动的两个最基本组成部分。我们的结果有助于理解微扫视行为中的个体变异性以及注视性眼动在视觉信息处理中的作用。