Yang WuJie, Cai Jianfeng, Xu Chengrong, Chen Aoyuan, Wang Yigang, Shi Yu, He Ping, Zhou Haoshen
Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China.
College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China.
Adv Mater. 2025 Aug;37(34):e2505285. doi: 10.1002/adma.202505285. Epub 2025 Jun 9.
Integrating Li metal anode (LMA) with a high-voltage NCM811 cathode is considered a pragmatic path in the pursuit of high-energy-density electrochemical energy storage systems. Yet, their practical application is still plagued by suboptimal cycling behavior. Numerous reports have already upgraded the cycle life of Li metal batteries (LMB) through anion-derived electrode-electrolyte interphase (EEI), but the adverse consequence brought by the inevitable decomposition of organic solvents is often underestimated. Here, a bipolar solvent molecule (1-Butanesulfonyl fluoride, BSF), is engineered by fusing an F-SO polar head for dissociating Li salts and contributing to the construction of EEI, along with a (CH) nonpolar tail to lower molecular polarity and enhance wettability. Within the BSF-based electrolyte, FSI anions and BSF coexist in the Li solvation shell, jointly contributing to the development of inorganic-rich EEI. Supported by robust interphases and expedited interfacial kinetics, the Li||NCM811 full cells (N/P = 1.05-1.8) exhibit favorable electrochemical performance over a wide temperature range from -40 to +55 °C. Furthermore, a 5.2 Ah Li metal pouch cell with a high cathode loading of 30 mg cm and lean electrolyte (1.9 g Ah) delivers an energy density of 470 Wh kg and achieves 100 stable cycles.
将锂金属阳极(LMA)与高压NCM811阴极相结合被认为是追求高能量密度电化学储能系统的一条务实途径。然而,它们的实际应用仍然受到不理想的循环行为的困扰。许多报告已经通过阴离子衍生的电极-电解质界面(EEI)提高了锂金属电池(LMB)的循环寿命,但有机溶剂不可避免的分解所带来的不利后果往往被低估。在这里,一种双极溶剂分子(1-丁烷磺酰氟,BSF)被设计出来,它融合了一个用于解离锂盐并有助于构建EEI的F-SO极性头,以及一个用于降低分子极性和增强润湿性的(CH)非极性尾。在基于BSF的电解质中,FSI阴离子和BSF共存于锂溶剂化壳层中,共同促进富含无机成分的EEI的形成。在坚固的界面和加速的界面动力学的支持下,Li||NCM811全电池(N/P = 1.05 - 1.8)在从-40到+55°C的宽温度范围内表现出良好的电化学性能。此外,一个具有30 mg cm高阴极负载和贫电解质(1.9 g Ah)的5.2 Ah锂金属软包电池实现了470 Wh kg的能量密度,并实现了100次稳定循环。