Peng Jiayue, Zhang Han, Zeng Ziqi, Zhang Haiyang, Pei Haijuan, Wu Qiang, Shen Yanbin, Guo Rui, Cheng Shijie, Xie Jia
State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
Adv Mater. 2025 Aug 28:e09109. doi: 10.1002/adma.202509109.
Lithium metal batteries (LMBs), featuring lithium metal anodes (LMAs) paired with high-voltage cathodes, are promising candidates for achieving energy densities exceeding 500 Wh kg. However, their commercialization is hindered by unstable interphases and insufficient Li transport kinetics, especially under high-rate conditions. Here, a hybrid diluent strategy is reported for diluted high-concentration electrolytes (DHCEs) that decouples Li solvation from interfacial stabilization by combining fluorinated aromatics with fluorinated ethers. Fluorinated aromatics promote efficient Li desolvation and fast transport, while fluorinated ethers provide high oxidative stability and robust interphase formation. Their combination produces a synergistic solvation environment, simultaneously enhancing ion transport, extending voltage tolerance, and stabilizing electrode-electrolyte interfaces. The tailored electrolyte enables 0.78 Ah Li-NCM622 pouch cells to achieve over 300 cycles at 0.33C charge/0.66C discharge under practical conditions (Li: 50 µm; NCM622: 20 mg cm; electrolyte: 3 g Ah). Furthermore, a 2.95 Ah Li-NCM811 pouch cell demonstrates an energy density of 518 Wh kg/985 Wh L and retains over 92% of its initial capacity after 107 cycles at 0.2C charge/1C discharge. This work establishes a scalable and cost-effective electrolyte design strategy that directly addresses the key failure mechanisms of LMBs, offering a viable pathway toward practical high-energy and high-rate applications.
锂金属电池(LMBs)以锂金属阳极(LMA)与高压阴极配对为特征,是实现超过500 Wh/kg能量密度的有前途的候选者。然而,它们的商业化受到不稳定界面相和锂传输动力学不足的阻碍,特别是在高倍率条件下。在此,报道了一种用于稀释高浓度电解质(DHCEs)的混合稀释剂策略,该策略通过将氟化芳烃与氟化醚结合,使锂溶剂化与界面稳定解耦。氟化芳烃促进有效的锂去溶剂化和快速传输,而氟化醚提供高氧化稳定性和坚固的界面相形成。它们的组合产生了协同溶剂化环境,同时增强了离子传输、扩展了电压耐受性并稳定了电极-电解质界面。定制的电解质使0.78 Ah的Li-NCM622软包电池在实际条件下(锂:50 µm;NCM622:20 mg/cm²;电解质:3 g/Ah)以0.33C充电/0.66C放电实现超过300次循环。此外,一个2.95 Ah的Li-NCM811软包电池展示了518 Wh/kg/985 Wh/L的能量密度,并在0.2C充电/1C放电107次循环后保留了超过92%的初始容量。这项工作建立了一种可扩展且具有成本效益的电解质设计策略,直接解决了LMBs的关键失效机制,为实际的高能量和高倍率应用提供了一条可行的途径。