Yim Hyeonmin, Shim Borim, Kim Hyeongwoo, Park Seokyu, Park Cheolwan, Kim Woo-Byoung
Department of Energy Engineering, Dankook University, Cheonan 31116, South Korea.
Department of Foundry Engineering, Dankook University, Yongin 16890, South Korea.
J Phys Chem Lett. 2025 Jun 19;16(24):6008-6014. doi: 10.1021/acs.jpclett.5c00188. Epub 2025 Jun 9.
Quantum dots (QDs) are essential in fields such as bioimaging and electronics due to their unique optical properties. However, traditional cadmium (Cd)-based QDs pose significant environmental and health risks. This study aimed to develop efficient, Cd-free QDs suitable for water dispersion and long-term stability. We synthesized InP/ZnSe/ZnS multi-shell QDs and employed a photochemical surface passivation method using a halogen lamp to enhance their photoluminescence. For water dispersion, we used ligand exchange with hydrophilic agents, such as 3-mercaptopropionic acid (3-MPA) and 11-mercaptoundecanoic acid (11-MUA). This process facilitated the dispersion of QDs in water while maintaining their quantum yield (QY). The results revealed that the water-dispersed QDs retained 92.5% of their initial QY after 2 months, a notable improvement compared to the 47.3% retention of QDs dispersed in chloroform solvents. This demonstrates that our photochemical passivation method and ligand exchange effectively stabilize QDs in aqueous environments. These Cd-free, water-dispersed QDs offer significant advantages for sustainable electronics, water treatment, and biomedical applications. The study highlights the potential for broader commercialization and further research into optimizing QD performance through advanced ligand and synthesis techniques.
量子点(QDs)因其独特的光学性质在生物成像和电子学等领域至关重要。然而,传统的基于镉(Cd)的量子点带来了重大的环境和健康风险。本研究旨在开发适用于水分散和长期稳定性的高效无镉量子点。我们合成了InP/ZnSe/ZnS多壳层量子点,并采用卤灯进行光化学表面钝化方法以增强其光致发光。对于水分散,我们使用与亲水剂如3-巯基丙酸(3-MPA)和11-巯基十一烷酸(11-MUA)进行配体交换。这一过程促进了量子点在水中的分散,同时保持其量子产率(QY)。结果表明,水分散的量子点在2个月后保留了其初始量子产率的92.5%,与分散在氯仿溶剂中的量子点47.3%的保留率相比有显著提高。这表明我们的光化学钝化方法和配体交换有效地在水性环境中稳定了量子点。这些无镉、水分散的量子点在可持续电子学、水处理和生物医学应用方面具有显著优势。该研究突出了通过先进的配体和合成技术实现更广泛商业化以及进一步优化量子点性能的研究潜力。