Zhao Xuling, Wang Yike, Li Liju, Lan Meijuan, He Xiaodi
Zhejiang Taizhou Hospital, Linhai, China.
The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
JMIR Res Protoc. 2025 Jun 9;14:e75368. doi: 10.2196/75368.
Postoperative delirium of cardiovascular surgery (PODOCVS) is an acute brain dysfunction characterized by inattention, impaired consciousness, and cognitive disorders, and the severity and presence of these symptoms fluctuate over time. PODOCVS occurs during the early postoperative period and is associated with adverse outcomes, including prolonged mechanical ventilation, premature mortality, and so on. Advances in its early diagnosis and treatment have mitigated some of the initial adverse effects of PODOCVS, but models for predicting risk in patients who have already developed PODOCVS remain inadequate for effective secondary prevention. Developing multivariable prediction models for stratifying PODOCVS risk would enable early, personalized interventions.
This study aims to systematically review and critically evaluate the development, performance, and applicability of existing prediction models for PODOCVS.
An extensive systematic search will be performed across multiple databases, including Embase, PubMed, the Web of Science, and so on, to identify studies related to multivariate predictive models for PODOCVS. A manual search of the included studies' reference lists will also be conducted to identify any additional relevant publications. This systematic review will include studies that meet the following criteria: (1) studies with subject populations comprising adult cardiovascular surgery patients aged ≥18 years, (2) studies involving the development and internal or external validation of predictive models for PODOCVS via multivariate analysis, and (3) studies with outcome measures focused on postoperative delirium. Two researchers (ZXL and WYK) will independently extract the data and assess the included studies' model quality using the Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies (CHARMS) checklist and the Predictive Model Bias Risk Assessment Tool (PROBAST). Since this study will not involve patient data, ethics approval is not required. Our findings will be published in a peer-reviewed scientific journal and the dataset will be made freely available.
Literature searches were conducted from the inception of the database to May 20, 2024 (updated up to January 31, 2025), and data extraction and analysis are expected to be complete by the end of May 2025. We currently have a preliminary plan to publish the complete study results by August 2025, subject to any unforeseen delays or changes in the research timeline.
We present a protocol for the systematic review of prediction models for postoperative delirium in cardiac surgery patients. Aiming to identify, summarize, and critically appraise existing risk models globally, this review seeks to provide an up-to-date reference for stakeholders involved in patients with cardiac surgery care, policy making, and research. In addition, we aim to investigate whether machine learning models for PODOCVS offer more accurate predictions than traditional statistical models.
PROSPERO CRD42024578957; https://www.crd.york.ac.uk/PROSPERO/view/CRD42024578957.
INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/75368.
心血管手术术后谵妄(PODOCVS)是一种急性脑功能障碍,其特征为注意力不集中、意识障碍和认知障碍,且这些症状的严重程度和出现情况会随时间波动。PODOCVS发生在术后早期,与不良预后相关,包括机械通气时间延长、过早死亡等。其早期诊断和治疗的进展减轻了PODOCVS的一些初始不良影响,但对于已发生PODOCVS患者的风险预测模型仍不足以进行有效的二级预防。开发用于分层PODOCVS风险的多变量预测模型将有助于早期的个性化干预。
本研究旨在系统评价并严格评估现有PODOCVS预测模型的开发、性能和适用性。
将在多个数据库中进行广泛的系统检索,包括Embase、PubMed、科学引文索引等,以识别与PODOCVS多变量预测模型相关的研究。还将对纳入研究的参考文献列表进行手动检索,以识别任何其他相关出版物。本系统评价将包括符合以下标准的研究:(1)研究对象为年龄≥18岁的成年心血管手术患者;(2)研究涉及通过多变量分析开发PODOCVS预测模型并进行内部或外部验证;(3)研究的结局指标侧重于术后谵妄。两名研究人员(ZXL和WYK)将独立提取数据,并使用预测模型研究系统评价的关键评估和数据提取(CHARMS)清单以及预测模型偏倚风险评估工具(PROBAST)评估纳入研究的模型质量。由于本研究不涉及患者数据,因此无需伦理批准。我们的研究结果将发表在同行评审的科学期刊上,数据集将免费提供。
从数据库建立至2024年5月20日进行了文献检索(截至2025年1月31日更新),数据提取和分析预计于2025年5月底完成。我们目前有初步计划在2025年8月公布完整的研究结果,但可能会因不可预见的延误或研究时间表的变化而有所变动。
我们提出了一项对心脏手术患者术后谵妄预测模型进行系统评价的方案。旨在识别、总结和严格评估全球现有的风险模型,本评价旨在为参与心脏手术护理、政策制定和研究的利益相关者提供最新参考。此外,我们旨在研究PODOCVS的机器学习模型是否比传统统计模型提供更准确的预测。
PROSPERO CRD42024578957;https://www.crd.york.ac.uk/PROSPERO/view/CRD420贯穿全文24578957。
国际注册报告识别号(IRRID):DERR1-10.2196/75368。