Suppr超能文献

运用机器学习算法开发心血管手术患者术后谵妄预测模型。

Development of postoperative delirium prediction models in patients undergoing cardiovascular surgery using machine learning algorithms.

机构信息

Division of Health Sciences, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka, 565-0871, Japan.

Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.

出版信息

Sci Rep. 2023 Nov 30;13(1):21090. doi: 10.1038/s41598-023-48418-5.

Abstract

Associations between delirium and postoperative adverse events in cardiovascular surgery have been reported and the preoperative identification of high-risk patients of delirium is needed to implement focused interventions. We aimed to develop and validate machine learning models to predict post-cardiovascular surgery delirium. Patients aged ≥ 40 years who underwent cardiovascular surgery at a single hospital were prospectively enrolled. Preoperative and intraoperative factors were assessed. Each patient was evaluated for postoperative delirium 7 days after surgery. We developed machine learning models using the Bernoulli naive Bayes, Support vector machine, Random forest, Extra-trees, and XGBoost algorithms. Stratified fivefold cross-validation was performed for each developed model. Of the 87 patients, 24 (27.6%) developed postoperative delirium. Age, use of psychotropic drugs, cognitive function (Mini-Cog < 4), index of activities of daily living (Barthel Index < 100), history of stroke or cerebral hemorrhage, and eGFR (estimated glomerular filtration rate) < 60 were selected to develop delirium prediction models. The Extra-trees model had the best area under the receiver operating characteristic curve (0.76 [standard deviation 0.11]; sensitivity: 0.63; specificity: 0.78). XGBoost showed the highest sensitivity (AUROC, 0.75 [0.07]; sensitivity: 0.67; specificity: 0.79). Machine learning algorithms could predict post-cardiovascular delirium using preoperative data.Trial registration: UMIN-CTR (ID; UMIN000049390).

摘要

已有研究报道,心血管手术后谵妄与术后不良事件之间存在关联,需要对谵妄高危患者进行术前识别,以便实施有针对性的干预措施。我们旨在开发和验证机器学习模型以预测心血管手术后谵妄。前瞻性纳入在一家医院接受心血管手术的年龄≥40 岁的患者。评估术前和术中因素。每位患者在手术后 7 天进行术后谵妄评估。我们使用伯努利朴素贝叶斯、支持向量机、随机森林、Extra-trees 和 XGBoost 算法开发机器学习模型。为每个开发的模型执行分层五折交叉验证。在 87 名患者中,有 24 名(27.6%)发生术后谵妄。年龄、使用精神药物、认知功能(Mini-Cog<4)、日常生活活动指数(Barthel 指数<100)、中风或脑出血史和 eGFR(估计肾小球滤过率)<60 被选来开发谵妄预测模型。Extra-trees 模型的受试者工作特征曲线下面积最佳(0.76 [标准偏差 0.11];灵敏度:0.63;特异性:0.78)。XGBoost 的灵敏度最高(AUROC,0.75 [0.07];灵敏度:0.67;特异性:0.79)。机器学习算法可以使用术前数据预测心血管手术后的谵妄。试验注册:UMIN-CTR(ID;UMIN000049390)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f2d/10689441/4995f6b2b7e5/41598_2023_48418_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验