Suppr超能文献

滤波点过程能够有效地捕捉神经电生理记录中的节律性和宽带功率谱结构。

Filtered point processes tractably capture rhythmic and broadband power spectral structure in neural electrophysiological recordings.

作者信息

Bloniasz Patrick F, Oyama Shohei, Stephen Emily P

机构信息

Graduate Program for Neuroscience, Boston University, Boston, MA 02215, United States of America.

Undergraduate Program for Neuroscience, Boston University, Boston, MA 02215, United States of America.

出版信息

J Neural Eng. 2025 Jun 26;22(3). doi: 10.1088/1741-2552/ade28b.

Abstract

. Neural electrophysiological recordings arise from interacting rhythmic (oscillatory) and broadband (aperiodic) biological subprocesses. Both rhythmic and broadband processes contribute to the neural power spectrum, which decomposes the variance of a neural recording across frequencies. While rhythms in various diseases and brain states continue to be well studied, researchers only recently have systematically studied broadband effects in the power spectrum. Broadband effects include shifts in power across all frequencies, which correlate with changes in local firing rates, and changes in the overall shape of the power spectrum, such as the spectral slope. Shape changes are evident in various conditions and brain states, influenced by factors such as excitation-to-inhibition balance, age, and diseases; additionally, it is increasingly recognized that broadband and rhythmic effects can interact on a sub-second timescale. As such, modeling tools that explicitly deal with both rhythmic and broadband contributors to the power spectrum and capture their interactions are essential to improving the interpretability of power spectral effects.. Here, we introduce a tractable stochastic forward modeling framework designed to capture both narrowband and broadband spectral effects when prior knowledge about the primary biophysical processes involved is available. Population-level neural recordings are modeled as the sum of filtered point processes (FPPs), each representing the contribution of a different biophysical process such as action potentials or postsynaptic potentials.. Our approach builds on prior neuroscience FPP work by allowing multiple interacting processes, time-varying firing rates, and deriving theoretical power spectra and cross-spectra. We demonstrate several properties of the models, including that they divide the power spectrum into frequency ranges dominated by rhythmic and broadband effects and capture spectral effects across multiple timescales, including sub-second cross-frequency coupling.. The framework can interpret empirically observed power spectra and cross-frequency coupling effects in biophysical terms, bridging theoretical models and experimental results.

摘要

神经电生理记录源自相互作用的节律性(振荡性)和宽带性(非周期性)生物子过程。节律性和宽带性过程都对神经功率谱有贡献,神经功率谱将神经记录的方差按频率进行分解。虽然各种疾病和脑状态下的节律性仍在深入研究,但研究人员直到最近才系统地研究功率谱中的宽带效应。宽带效应包括所有频率上功率的变化,这与局部放电率的变化相关,以及功率谱整体形状的变化,如频谱斜率。形状变化在各种条件和脑状态下都很明显,受兴奋与抑制平衡、年龄和疾病等因素影响;此外,人们越来越认识到宽带效应和节律性效应可以在亚秒级时间尺度上相互作用。因此,能够明确处理功率谱中节律性和宽带性因素并捕捉它们相互作用的建模工具对于提高功率谱效应的可解释性至关重要。在这里,我们引入了一个易于处理的随机正向建模框架,当有关所涉及的主要生物物理过程的先验知识可用时,该框架旨在捕捉窄带和宽带频谱效应。群体水平的神经记录被建模为滤波点过程(FPPs)的总和,每个滤波点过程代表不同生物物理过程的贡献,如动作电位或突触后电位。我们的方法建立在先前神经科学FPP工作的基础上,允许多个相互作用的过程、随时间变化的放电率,并推导理论功率谱和交叉谱。我们展示了模型的几个特性,包括它们将功率谱划分为由节律性和宽带效应主导的频率范围,并捕捉多个时间尺度上的频谱效应,包括亚秒级交叉频率耦合。该框架可以从生物物理角度解释经验观察到的功率谱和交叉频率耦合效应,架起理论模型和实验结果之间的桥梁。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验