Suppr超能文献

评估年龄结构对英国新冠疫情的影响。

Estimating the contribution of age-structure to the COVID-19 epidemic in England.

作者信息

Hinch Robert, Panovska-Griffiths Jasmina, Fraser Christophe

机构信息

Pandemic Sciences Institute, University of Oxford, Oxford, UK.

Pandemic Sciences Institute, University of Oxford, Oxford, UK; The Queen's College, University of Oxford, Oxford, UK.

出版信息

J Theor Biol. 2025 Aug 21;611:112177. doi: 10.1016/j.jtbi.2025.112177. Epub 2025 Jun 7.

Abstract

The spread of epidemics in populations is often inhomogeneous, consequently infection incidence varies between sub-populations. Age-structure is often particularly important in the dynamics of epidemics, due to the contact patterns between individuals of different ages. Public health interventions are often targeted at specific age-groups, therefore analysing the age-structure of transmission patterns is essential to evaluate the efficacy of these interventions. We develop a Bayesian model to estimate the contribution of different age-groups to the reproduction number (R) and to new infections for COVID-19 in England throughout 2021, using the ONS Infection Survey. We model a dynamic next-generation matrix in a novel way by splitting it into a static survey-derived social-contact matrix, multiplied by a low-rank dynamic matrix. We show that whilst R was typically highest for school-age children (5-11y and 12-17y) and lowest for the elderly (60y+), the former typically rose during term-time and fell during the school-holidays. The dynamics for young adults (18-29y) were particularly interesting, which increased relative to older adults in late-spring 2021 following the re-opening of entertainment venues. The R peaked for young adults in July 2021 coinciding with the period of the Euros football tournament, before rapidly dropping as the national vaccination program reached this group in August 2021. Our model is an important tool that can estimate R and attribute new infections by the infector's age, thus identifying core groups which sustain the epidemic and informing the design of targeted interventions.

摘要

传染病在人群中的传播往往是不均匀的,因此不同亚人群的感染发病率存在差异。由于不同年龄段个体之间的接触模式,年龄结构在传染病动态中通常尤为重要。公共卫生干预措施通常针对特定年龄组,因此分析传播模式的年龄结构对于评估这些干预措施的效果至关重要。我们利用英国国家统计局的感染调查,开发了一个贝叶斯模型,以估计2021年全年英国不同年龄组对新冠病毒传播数(R)和新增感染病例的贡献。我们以一种新颖的方式对动态下一代矩阵进行建模,将其分解为一个基于调查得出的静态社会接触矩阵,再乘以一个低秩动态矩阵。我们发现,虽然R通常在学龄儿童(5 - 11岁和12 - 17岁)中最高,而在老年人(60岁以上)中最低,但前者通常在学期期间上升,在学校假期下降。年轻人(18 - 29岁)的动态情况尤其有趣,在2021年春末娱乐场所重新开放后,他们相对于老年人的感染率有所上升。年轻人的R在2021年7月达到峰值,恰逢欧洲杯足球赛期间,随后随着2021年8月全国疫苗接种计划覆盖该群体而迅速下降。我们的模型是一个重要工具,它可以按感染者年龄估计R并确定新增感染病例的来源,从而识别维持疫情的核心群体,并为有针对性的干预措施设计提供依据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验