Suppr超能文献

整合多个空间尺度的数据以估计阿片类药物共病的局部负担。

Integrating data at multiple spatial scales to estimate the local burden of the opioid syndemic.

作者信息

Murphy Eva, Kline David, McKnight Erin, Bonny Andrea, Miller William C, Waller Lance, Hepler Staci A

机构信息

Department of Statistical Sciences, College of Arts and Sciences, Wake Forest University, Winston-Salem, NC, USA.

Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, USA.

出版信息

Spat Spatiotemporal Epidemiol. 2025 Jun;53:100720. doi: 10.1016/j.sste.2025.100720. Epub 2025 Apr 22.

Abstract

The opioid epidemic has been particularly severe in Ohio, prompting significant efforts to understand its spatial patterns, mainly using available data at the county level. However, relying solely on county-level analysis can overlook crucial information relevant to localized effects. To address this, we integrate spatially misaligned data observed at the county and ZIP code levels to explore the complex interaction of five opioid-related outcomes, providing a more detailed local understanding of the opioid epidemic. We demonstrate how to map ZIP-code level data to ZIP-code Tabulation Areas (ZCTAs) and relate the county-level and ZCTA-level outcomes to a spatially correlated latent factor. The latent factor is defined on the intersection of the misaligned areal units, which provides a more granular understanding of the opioid epidemic. Furthermore, this approach allows us to identify areas with varying levels of opioid burden and reveals local regions with relatively high burden that county-level analyses might miss. Finally, we highlight the need for careful consideration when relying solely on ZIP code level data for naloxone, as it may lead to misinterpretations, particularly in rural regions.

摘要

阿片类药物流行在俄亥俄州尤为严重,这促使人们做出重大努力来了解其空间模式,主要是利用县级层面的现有数据。然而,仅依靠县级分析可能会忽略与局部影响相关的关键信息。为了解决这个问题,我们整合了在县级和邮政编码级别观察到的空间错位数据,以探索与阿片类药物相关的五个结果的复杂相互作用,从而更详细地从地方层面了解阿片类药物流行情况。我们展示了如何将邮政编码级别的数据映射到邮政编码分区(ZCTA),并将县级和ZCTA级别的结果与空间相关的潜在因素联系起来。潜在因素是在错位的区域单元的交叉点上定义的,这能让我们对阿片类药物流行有更细致的了解。此外,这种方法使我们能够识别出阿片类药物负担程度不同的区域,并揭示出县级分析可能遗漏的负担相对较高的局部地区。最后,我们强调,仅依靠邮政编码级别数据来获取纳洛酮时需要谨慎考虑,因为这可能会导致误解,尤其是在农村地区。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d917/12168144/7739256a5f54/nihms-2084702-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验