Suppr超能文献

非洲糖尿病酮症酸中毒的恢复时间:系统评价与荟萃分析

Recovery time of diabetic ketoacidosis in Africa: Systematic review and meta-analysis.

作者信息

Lidetu Tadios, Birhanu Simon, Asgai Addisu Simachew, Derse Tsegaamlak Kumelachew, Abinew Yideg, Tadesse Moges, Mitiku Desalegn, Chane Jemberu, Adane Banchamilak, Wudu Tadele Kassahun, Mekonnen Betelhem, Habtamu Tamiru Desiyalew

机构信息

College of Health Sciences, Debark University, Ethiopia.

Department of Nursing, College of Health Sciences, Debark University, Debark, Ethiopia.

出版信息

Metabol Open. 2025 May 15;26:100370. doi: 10.1016/j.metop.2025.100370. eCollection 2025 Jun.

Abstract

BACKGROUND

Diabetes mellitus is a long-term metabolic disease marked by consistently elevated blood glucose levels. Diabetic ketoacidosis is the medical consequence of diabetes mellitus that has the highest attributed fatality rate. Socioeconomically differences affect how long it takes to recover from diabetic ketoacidosis. A few research were carried out in Africa to demonstrate how long diabetic ketoacidosis takes to recover. However, the pooled median recovery time and predictors of diabetic ketoacidosis have not been studied in Africa. Thus, determine the pooled median recovery time and predictors of diabetic ketoacidosis in Africa was the aim of this systematic review and meta-analysis.

METHODS

To find available publications, a number of databases were analyzed, including PubMed, Science Direct, Cochrane, Hinari, Google Scholar, grey literature, and articles from various university repository sites. Microsoft Excel version 13 was used to extract and sort the data before exporting it to STATA/MP 17.0 for analysis. The quality of each study was evaluated using the Newcastle-Ottawa Scale. A 95 percent confidence interval Der Simonian random-effects model was employed to investigate the pooled recovery time of diabetic ketoacidosis. Publication bias and heterogeneity were assessed using the Egger's test and I. Both meta-regression and subgroup analysis were used to determine the potential source of heterogeneity. Statistical significance was defined as P-values below 0.05.

RESULT

The pooled median recovery time for diabetic ketoacidosis in Africa was 38 h (95 percent CI: 33-43 h), according to this comprehensive review and meta-analysis. Significant heterogeneity is evident when looking at the Galbraith plot with I2 = 100 % (p < 0.001). Research conducted after 2020 revealed that diabetic ketoacidosis has a long recovery time of 40 h (95 percent CI: 3-77 h). However, research with fewer than 300 participants showed that diabetic ketoacidosis recovered more quickly: 18 h (95 percent confidence interval: 12-24 h).

CONCLUSION

Among patients with diabetic ketoacidosis in Africa, the pooled median recovery time was lengthy. The recovery time from diabetic ketoacidosis was influenced by a number of factors, including the severity of the diabetic ketoacidosis, the delay in starting therapy, and the length of time the patient had diabetes mellitus, and elevated blood glucose levels. Diabetic ketoacidosis recovery time can be shortened by altering these factors.

摘要

背景

糖尿病是一种长期代谢性疾病,其特征是血糖水平持续升高。糖尿病酮症酸中毒是糖尿病最致命的医学后果。社会经济差异影响糖尿病酮症酸中毒的恢复时间。非洲进行了一些研究以证明糖尿病酮症酸中毒需要多长时间才能恢复。然而,非洲尚未对糖尿病酮症酸中毒的合并中位恢复时间和预测因素进行研究。因此,本系统评价和荟萃分析的目的是确定非洲糖尿病酮症酸中毒的合并中位恢复时间和预测因素。

方法

为了找到可用的出版物,分析了多个数据库,包括PubMed、Science Direct、Cochrane、Hinari、谷歌学术、灰色文献以及来自各个大学知识库网站的文章。在将数据导出到STATA/MP 17.0进行分析之前,使用Microsoft Excel 13版来提取和整理数据。使用纽卡斯尔-渥太华量表评估每项研究的质量。采用95%置信区间的Der Simonian随机效应模型来研究糖尿病酮症酸中毒的合并恢复时间。使用Egger检验和I²评估发表偏倚和异质性。荟萃回归和亚组分析均用于确定异质性的潜在来源。统计学显著性定义为P值低于0.05。

结果

根据这项全面的综述和荟萃分析,非洲糖尿病酮症酸中毒的合并中位恢复时间为38小时(95%置信区间:33 - 43小时)。从Galbraith图来看,异质性很明显,I² = 100%(p < 0.001)。2020年之后进行的研究表明,糖尿病酮症酸中毒的恢复时间很长,为40小时(95%置信区间:3 - 77小时)。然而,参与者少于300人的研究表明,糖尿病酮症酸中毒恢复得更快:18小时(95%置信区间:12 - 24小时)。

结论

在非洲糖尿病酮症酸中毒患者中,合并中位恢复时间较长。糖尿病酮症酸中毒的恢复时间受多种因素影响,包括糖尿病酮症酸中毒的严重程度、开始治疗的延迟、患者患糖尿病的时间长短以及血糖水平升高。改变这些因素可以缩短糖尿病酮症酸中毒的恢复时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42c6/12148423/bc14f5b7c4a6/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验