Suppr超能文献

基于TCN-GAN的高级持续性威胁(APT)组织恶意软件分类研究

Research on APT groups malware classification based on TCN-GAN.

作者信息

Chen Daowei, Yan Hongsheng

机构信息

School of Information and Communication, National University of Defense Technology, Wuhan, China.

出版信息

PLoS One. 2025 Jun 10;20(6):e0323377. doi: 10.1371/journal.pone.0323377. eCollection 2025.

Abstract

Advanced Persistent Threat (APT) malware attacks, characterized by their stealth, persistence, and high destructiveness, have become a critical focus in cybersecurity defense for large organizations. Verifying and identifying the sources and affiliated groups of APT malware is one of the effective means to counter APT attacks. This paper addresses the issue of tracing and attributing APT malware groups. By improving and innovating the extraction methods for image features and disassembled instruction N-gram features of APT malware, and based on the Temporal Convolutional Network (TCN) model, the paper achieves high-accuracy classification and identification of APT malware. To mitigate the impact of insufficient APT malware samples and data imbalance on classification performance, the paper employs Generative Adversarial Networks (GAN) to expand the sample size. Validation on both public and self-constructed datasets shows that the proposed method achieves an accuracy and precision rate of 99.8%, significantly outperforming other methods. This work provides a foundation for subsequent countermeasures and accountability against related APT attack groups.

摘要

高级持续性威胁(APT)恶意软件攻击具有隐蔽性、持续性和高度破坏性,已成为大型组织网络安全防御的关键重点。验证和识别APT恶意软件的来源及附属组织是应对APT攻击的有效手段之一。本文探讨了APT恶意软件组织的追踪和溯源问题。通过改进和创新APT恶意软件的图像特征及反汇编指令N-gram特征提取方法,并基于时间卷积网络(TCN)模型,实现了对APT恶意软件的高精度分类和识别。为减轻APT恶意软件样本不足和数据不平衡对分类性能的影响,本文采用生成对抗网络(GAN)扩大样本规模。在公共数据集和自建数据集上的验证表明,该方法的准确率和精确率达到99.8%,显著优于其他方法。这项工作为后续针对相关APT攻击组织的应对措施和责任追究奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aeab/12151386/68cfb0f11aab/pone.0323377.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验