Suppr超能文献

一种用于旋转异构体和质子化状态分配的自洽方法(RAPA):超越单一蛋白质构型

A Self-Consistent Approach to Rotamer and Protonation State Assignments (RAPA): Moving Beyond Single Protein Configurations.

作者信息

Ghattas Mossa, Gera Prerna, Ramsey Steven, Cruz-Balberdy Anthony, Abraham Nathan, Molino Vjay, McKay Daniel, Kurtzman Tom

机构信息

Ph.D. Program in Chemistry, The Graduate Center, City University of New York, New York, New York 10016, United States.

Ventus Therapeutics, Inc., 4800 Rue Levy, Montreal, Quebec H4R 2P7, Canada.

出版信息

J Chem Inf Model. 2025 Jul 28;65(14):7639-7650. doi: 10.1021/acs.jcim.5c00859. Epub 2025 Jun 11.

Abstract

There are currently over 160,000 protein crystal structures obtained by X-ray diffraction with resolutions of 1.5 Å or greater in the Protein Data Bank. At these resolutions hydrogen atoms do not resolve and heavy atoms such as oxygen, carbon, and nitrogen are indistinguishable. This leads to ambiguity in the rotamer and protonation states of multiple amino acids, notably asparagine, glutamine, histidine, serine, tyrosine, and threonine. When the rotamer and protonation states of these residues change, so too does the electrochemical surface of a binding site. A variety of computational approaches have been developed to assign states for these residues by investigating all possibilities and typically deciding on a single rotamer or protonation state for each residue that is consistent with the crystal structure. Here, we posit that there are multiple rotamer and protonation states that are consistent with the resolved structure of the proteins and introduce a Rotamer and Protonation Assignment (RAPA) protocol which analyzes local hydrogen-bonding environments in the resolved structures of proteins and identifies a set of unique rotamer and protonation states that are energetically consistent with the experimentally reported crystal structure. We evaluate the RAPA-predicted configurations in molecular dynamics simulations and find that there are multiple configurations for each protein that maintain structures consistent with the X-ray results. In our initial evaluations of the RAPA protocol, we find that for most proteins (69/77) there are multiple energetically accessible rotamer and protonation state configurations however the total number is limited to 8 or fewer for most of the proteins (62 of 77). This suggests that there is no combinatorial explosion in the number of energetically accessible rotamer and protonation states for most proteins and investigating all such states is computationally feasible.

摘要

目前,蛋白质数据库中通过X射线衍射获得的分辨率为1.5埃或更高的蛋白质晶体结构超过16万个。在这些分辨率下,氢原子无法分辨,而氧、碳和氮等重原子也无法区分。这导致多个氨基酸(尤其是天冬酰胺、谷氨酰胺、组氨酸、丝氨酸、酪氨酸和苏氨酸)的旋转异构体和质子化状态存在歧义。当这些残基的旋转异构体和质子化状态发生变化时,结合位点的电化学表面也会发生变化。已经开发了多种计算方法,通过研究所有可能性为这些残基分配状态,并通常为每个与晶体结构一致的残基确定单一的旋转异构体或质子化状态。在这里,我们假定存在多个与蛋白质解析结构一致的旋转异构体和质子化状态,并引入了一种旋转异构体和质子化分配(RAPA)协议,该协议分析蛋白质解析结构中的局部氢键环境,并识别出一组在能量上与实验报告的晶体结构一致的独特旋转异构体和质子化状态。我们在分子动力学模拟中评估了RAPA预测的构型,发现每种蛋白质都有多种构型,这些构型保持与X射线结果一致的结构。在我们对RAPA协议的初步评估中,我们发现对于大多数蛋白质(69/77),存在多个能量上可及的旋转异构体和质子化状态构型,然而对于大多数蛋白质(77个中的62个),总数限制在8个或更少。这表明,对于大多数蛋白质来说,能量上可及的旋转异构体和质子化状态的数量不会出现组合爆炸,研究所有这些状态在计算上是可行的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bbb/12308802/78a5c77c737f/ci5c00859_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验