Suppr超能文献

基于机器学习的急性缺血性脑卒中后认知障碍预测模型:一项横断面研究。

Machine Learning-Based Model for Prediction of Post-Stroke Cognitive Impairment in Acute Ischemic Stroke: A Cross-Sectional Study.

作者信息

Zhang Junqin, Kong Zhaohong, Hong Songlin, Zhang Zhentao

机构信息

Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China.

F&E Data Technology (Tianjin) Corporation, Tianjin, China.

出版信息

Neurol India. 2024 Nov 1;72(6):1193-1198. doi: 10.4103/ni.ni_987_21. Epub 2024 Dec 17.

Abstract

BACKGROUND AND OBJECTIVE

Early identification of post-stroke cognitive impairment (PSCI) is an important challenge for clinicians. In this study, we aimed to build a machine learning-based prediction model for PSCI and uncover potential risk factors to support clinical decision-making.

MATERIALS AND METHODS

We collected features of 96 patients with acute ischemic stroke and measured cognitive impairment using the Mini-Mental State Examination. Three common machine learning algorithms, including support vector machine, Gaussian naive Bayes, and logistic regression, were used to build clinical prediction models for PSCI. The area under the receiver operating characteristic curve (AUROC), specificity, sensitivity, negative prediction value, positive prediction value, accuracy, and model fitting effect were used to evaluate the predictive performance of the models and further determine the clinical prediction rules.

RESULTS

In this study, the logistic regression model showed the best performance with an AUROC of 0.86, which was higher than the values of the other two models. Moreover, the logistic regression model showed high sensitivity (0.82), specificity (0.83), negative prediction value (0.88), positive prediction value (0.75), and accuracy (0.83). This work identified the top nine factors in importance ranking as predictors of PSCI. Among them, age and urine glucose were significantly associated with PSCI (P < 0.05).

CONCLUSIONS

Machine learning algorithms may be useful in the prediction of PSCI, especially logistic regression algorithms. In the present study, aging and hyperglycemia were independent risk factors for PSCI, and the cognition of such patients should be carefully addressed in clinical practice screening work.

摘要

背景与目的

早期识别卒中后认知障碍(PSCI)是临床医生面临的一项重要挑战。在本研究中,我们旨在构建一个基于机器学习的PSCI预测模型,并找出潜在风险因素以支持临床决策。

材料与方法

我们收集了96例急性缺血性卒中患者的特征,并使用简易精神状态检查表测量认知障碍情况。使用三种常见的机器学习算法,包括支持向量机、高斯朴素贝叶斯和逻辑回归,构建PSCI的临床预测模型。采用受试者工作特征曲线下面积(AUROC)、特异性、敏感性、阴性预测值、阳性预测值、准确性和模型拟合效果来评估模型的预测性能,并进一步确定临床预测规则。

结果

在本研究中,逻辑回归模型表现最佳,AUROC为0.86,高于其他两个模型的值。此外,逻辑回归模型显示出高敏感性(0.82)、特异性(0.83)、阴性预测值(0.88)、阳性预测值(0.75)和准确性(0.83)。本研究确定了重要性排名前九的因素作为PSCI的预测指标。其中,年龄和尿糖与PSCI显著相关(P<0.05)。

结论

机器学习算法可能有助于PSCI的预测,尤其是逻辑回归算法。在本研究中,衰老和高血糖是PSCI的独立危险因素,在临床实践筛查工作中应仔细关注此类患者的认知情况。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验