Ryu Wi-Sun, Song Jae W, Lim Jae-Sung, Lee Ju Hyung, Sunwoo Leonard, Kim Dongmin, Kim Dong-Eog, Bae Hee-Joon, Lee Myungjae, Kim Beom Joon
Artificial Intelligence Research Center, JLK Inc., Seoul, Republic of Korea.
Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Brain Behav. 2025 Jun;15(6):e70602. doi: 10.1002/brb3.70602.
Evaluating leukoaraiosis (LA) on CT is challenging due to its low contrast and similarity to parenchymal gliosis. We developed and validated a deep learning algorithm for LA segmentation using CT-MRIFLAIR paired data from a multicenter Korean registry and tested it in a US dataset.
We constructed a large multicenter dataset of CT-FLAIR MRI pairs. Using validated software to segment white matter hyperintensity (WMH) on FLAIR, we generated pseudo-ground-truth LA labels on CT through deformable image registration. A 2D nnU-Net architecture was trained solely on CT images and registered masks. Performance was evaluated using the Dice similarity coefficient (DSC), concordance correlation coefficient (CCC), and Pearson correlation across internal, external, and US validation cohorts. Clinical associations of predicted LA volume with age, risk factors, and poststroke outcomes were also analyzed.
The external test set yielded a DSC of 0.527, with high volume correlations against registered LA (r = 0.953) and WMH (r = 0.951). In the external testing and US datasets, predicted LA volumes correlated with Fazekas grade (r = 0.832-0.891) and the correlations were consistent across CT vendors and infarct volumes. In an independent clinical cohort (n = 867), LA volume was independently associated with age, vascular risk factors, and 3-month functional outcomes.
Our deep learning algorithm offers a reproducible method for LA segmentation on CT, bridging the gap between CT and MRI assessments in patients with ischemic stroke.
由于脑白质疏松(LA)在CT上对比度低且与实质胶质增生相似,因此对其进行评估具有挑战性。我们利用来自韩国多中心登记处的CT-MRIFLAIR配对数据开发并验证了一种用于LA分割的深度学习算法,并在美国数据集中对其进行了测试。
我们构建了一个大型多中心CT-FLAIR MRI配对数据集。使用经过验证的软件在FLAIR上分割白质高信号(WMH),通过可变形图像配准在CT上生成伪真实LA标签。仅在CT图像和配准掩码上训练二维nnU-Net架构。使用Dice相似系数(DSC)、一致性相关系数(CCC)以及内部、外部和美国验证队列中的Pearson相关性来评估性能。还分析了预测的LA体积与年龄、危险因素和中风后结局的临床关联。
外部测试集的DSC为0.527,与配准的LA(r = 0.953)和WMH(r = 0.951)具有高度的体积相关性。在外部测试和美国数据集中,预测的LA体积与Fazekas分级相关(r = 0.832 - 0.891),并且在不同CT供应商和梗死体积之间相关性一致。在一个独立的临床队列(n = 867)中,LA体积与年龄、血管危险因素和3个月功能结局独立相关。
我们的深度学习算法为CT上的LA分割提供了一种可重复的方法,弥合了缺血性中风患者CT和MRI评估之间的差距。