Park Joonhyeon, Yoon Jin Sook, Kim Namju, Shin Kyubo, Park Hyun Young, Kim Jongchan, Park Jaemin, Moon Jae Hoon, Ko JaeSang
Division of Research & Development, THYROSCOPE Inc., Ulsan, Republic of Korea.
Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Republic of Korea.
Ophthalmol Sci. 2025 Apr 8;5(5):100791. doi: 10.1016/j.xops.2025.100791. eCollection 2025 Sep-Oct.
To develop and evaluate a deep learning (DL)-assisted system for proptosis measurement using facial photographs in thyroid eye disease (TED).
A retrospective cohort study.
This study included 1108 patients with TED from Severance Hospital (SH) and 171 from Seoul National University Bundang Hospital (SNUBH).
The DL-assisted system was trained using 1610 facial images paired with Hertel exophthalmometry measurements from SH and externally validated using 511 SNUBH images. The system employs a dual-stream ResNet-18 neural network, utilizing both red-green-blue images and depth maps generated by the ZoeDepth algorithm.
Accuracy was assessed using mean absolute error (MAE), Pearson correlation coefficient, intraclass correlation coefficient (ICC), and area under the curve of the receiver operating characteristic curve.
The DL-assisted system achieved an MAE of 1.27 mm for the SH dataset and 1.24 mm for the SNUBH dataset. Pearson correlation coefficients were 0.82 and 0.77, respectively, with ICCs indicating strong reliability (0.80 for SH and 0.73 for SNUBH). The receiver operating characteristic curve analysis showed area under the curves of 0.91 for SH and 0.88 for SNUBH in detecting proptosis. The system detected significant proptosis changes (≥ 2 mm) with 74.6% accuracy.
The DL-assisted system offers an accurate, accessible method for exophthalmometry in patients with TED using facial photographs. This tool presents a promising alternative to traditional exophthalmometry, potentially improving access to reliable proptosis measurement in both clinical and nonspecialist settings.
Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
开发并评估一种利用甲状腺眼病(TED)患者面部照片进行突眼测量的深度学习(DL)辅助系统。
一项回顾性队列研究。
本研究纳入了来自Severance医院(SH)的1108例TED患者以及来自首尔国立大学盆唐医院(SNUBH)的171例患者。
使用来自SH的1610张面部图像与Hertel眼球突出计测量值配对训练DL辅助系统,并使用511张SNUBH图像进行外部验证。该系统采用双流ResNet - 18神经网络,利用红 - 绿 - 蓝图像和由ZoeDepth算法生成的深度图。
使用平均绝对误差(MAE)、Pearson相关系数、组内相关系数(ICC)以及受试者操作特征曲线下面积评估准确性。
DL辅助系统在SH数据集上的MAE为1.27毫米,在SNUBH数据集上为1.24毫米。Pearson相关系数分别为0.82和0.77,ICC表明可靠性强(SH为0.80,SNUBH为0.73)。受试者操作特征曲线分析显示,在检测突眼中,SH的曲线下面积为0.91,SNUBH为0.88。该系统检测到显著突眼变化(≥2毫米)的准确率为74.6%。
DL辅助系统为使用面部照片的TED患者眼球突出测量提供了一种准确、便捷的方法。该工具是传统眼球突出测量的一种有前景的替代方法,有可能在临床和非专科环境中改善获得可靠突眼测量的途径。
在本文末尾的脚注和披露中可能会发现专有或商业披露信息。