Yew Samantha Min Er, Lei Xiaofeng, Chen Yibing, Goh Jocelyn Hui Lin, Pushpanathan Krithi, Xue Can Can, Wang Ya Xing, Jonas Jost B, Sabanayagam Charumathi, Koh Victor Teck Chang, Xu Xinxing, Liu Yong, Cheng Ching-Yu, Tham Yih-Chung
Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
Centre for Innovation and Precision Eye Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
Ophthalmol Sci. 2024 Nov 28;5(2):100659. doi: 10.1016/j.xops.2024.100659. eCollection 2025 Mar-Apr.
Recent studies utilized ocular images and deep learning (DL) to predict refractive error and yielded notable results. However, most studies did not address biases from imbalanced datasets or conduct external validations. To address these gaps, this study aimed to integrate the deep imbalanced regression (DIR) technique into ResNet and Vision Transformer models to predict refractive error from retinal photographs.
Retrospective study.
We developed the DL models using up to 103 865 images from the Singapore Epidemiology of Eye Diseases Study and the United Kingdom Biobank, with internal testing on up to 8067 images. External testing was conducted on 7043 images from the Singapore Prospective Study and 5539 images from the Beijing Eye Study. Retinal images and corresponding refractive error data were extracted.
This retrospective study developed regression-based models, including ResNet34 with DIR, and SwinV2 (Swin Transformer) with DIR, incorporating Label Distribution Smoothing and Feature Distribution Smoothing. These models were compared against their baseline versions, ResNet34 and SwinV2, in predicting spherical and spherical equivalent (SE) power.
Mean absolute error (MAE) and coefficient of determination were used to evaluate the models' performances. The Wilcoxon signed-rank test was performed to assess statistical significance between DIR-integrated models and their baseline versions.
For prediction of the spherical power, ResNet34 with DIR (MAE: 0.84D) and SwinV2 with DIR (MAE: 0.77D) significantly outperformed their baseline-ResNet34 (MAE: 0.88D; < 0.001) and SwinV2 (MAE: 0.87D; < 0.001) in internal test. For prediction of the SE power, ResNet34 with DIR (MAE: 0.78D) and SwinV2 with DIR (MAE: 0.75D) consistently significantly outperformed its baseline-ResNet34 (MAE: 0.81D; < 0.001) and SwinV2 (MAE: 0.78D; < 0.05) in internal test. Similar trends were observed in external test sets for both spherical and SE power prediction.
Deep imbalanced regressed-integrated DL models showed potential in addressing data imbalances and improving the prediction of refractive error. These findings highlight the potential utility of combining DL models with retinal imaging for opportunistic screening of refractive errors, particularly in settings where retinal cameras are already in use.
Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
近期研究利用眼部图像和深度学习(DL)来预测屈光不正,并取得了显著成果。然而,大多数研究并未解决不平衡数据集带来的偏差问题,也未进行外部验证。为填补这些空白,本研究旨在将深度不平衡回归(DIR)技术集成到ResNet和视觉Transformer模型中,以从视网膜照片预测屈光不正。
回顾性研究。
我们使用来自新加坡眼病流行病学研究和英国生物银行的多达103865张图像开发了DL模型,并对多达8067张图像进行了内部测试。对来自新加坡前瞻性研究的7043张图像和北京眼病研究的5539张图像进行了外部测试。提取了视网膜图像和相应的屈光不正数据。
这项回顾性研究开发了基于回归的模型,包括带有DIR的ResNet34和带有DIR的SwinV2(Swin Transformer),并纳入了标签分布平滑和特征分布平滑。在预测球镜度数和球镜等效(SE)度数方面,将这些模型与其基线版本ResNet34和SwinV2进行了比较。
使用平均绝对误差(MAE)和决定系数来评估模型的性能。进行Wilcoxon符号秩检验以评估集成DIR的模型与其基线版本之间的统计学显著性。
在内部测试中,对于球镜度数的预测,带有DIR的ResNet34(MAE:0.84D)和带有DIR的SwinV2(MAE:0.77D)显著优于其基线版本ResNet34(MAE:0.88D;<0.001)和SwinV2(MAE:0.87D;<0.001)。对于SE度数的预测,带有DIR的ResNet34(MAE:0.78D)和带有DIR的SwinV2(MAE:0.75D)在内部测试中始终显著优于其基线版本ResNet34(MAE:0.81D;<0.001)和SwinV2(MAE:0.78D;<0.05)。在球镜度数和SE度数预测的外部测试集中也观察到了类似趋势。
深度不平衡回归集成的DL模型在解决数据不平衡和改善屈光不正预测方面显示出潜力。这些发现突出了将DL模型与视网膜成像相结合用于屈光不正机会性筛查的潜在效用,特别是在已经使用视网膜相机的环境中。
在本文末尾的脚注和披露中可能会找到专有或商业披露信息。