Suppr超能文献

手性单萜揭示了森林排放机制和对干旱的响应。

Chiral monoterpenes reveal forest emission mechanisms and drought responses.

机构信息

Atmospheric Chemistry, Max Planck Institute for Chemistry, Mainz, Germany.

Ecosystem Physiology, Faculty of Environment and Natural Resources, Albert-Ludwig-University of Freiburg, Freiburg, Germany.

出版信息

Nature. 2022 Sep;609(7926):307-312. doi: 10.1038/s41586-022-05020-5. Epub 2022 Sep 7.

Abstract

Monoterpenes (CH) are emitted in large quantities by vegetation to the atmosphere (>100 TgC year), where they readily react with hydroxyl radicals and ozone to form new particles and, hence, clouds, affecting the Earth's radiative budget and, thereby, climate change. Although most monoterpenes exist in two chiral mirror-image forms termed enantiomers, these (+) and (-) forms are rarely distinguished in measurement or modelling studies. Therefore, the individual formation pathways of monoterpene enantiomers in plants and their ecological functions are poorly understood. Here we present enantiomerically separated atmospheric monoterpene and isoprene data from an enclosed tropical rainforest ecosystem in the absence of ultraviolet light and atmospheric oxidation chemistry, during a four-month controlled drought and rewetting experiment. Surprisingly, the emitted enantiomers showed distinct diel emission peaks, which responded differently to progressive drying. Isotopic labelling established that vegetation emitted mainly de novo-synthesized (-)-α-pinene, whereas (+)-α-pinene was emitted from storage pools. As drought progressed, the source of (-)-α-pinene emissions shifted to storage pools, favouring cloud formation. Pre-drought mixing ratios of both α-pinene enantiomers correlated better with other monoterpenes than with each other, indicating different enzymatic controls. These results show that enantiomeric distribution is key to understanding the underlying processes driving monoterpene emissions from forest ecosystems and predicting atmospheric feedbacks in response to climate change.

摘要

单萜(CH)由植被大量排放到大气中(>100TgC 年),在大气中它们很容易与羟基自由基和臭氧反应,形成新的颗粒,从而形成云和云,影响地球的辐射收支,从而影响气候变化。尽管大多数单萜以两种手性镜像形式存在,称为对映异构体,但在测量或建模研究中很少区分这些(+)和(-)形式。因此,植物中单萜对映异构体的个体形成途径及其生态功能知之甚少。在这里,我们在一个没有紫外线和大气氧化化学的封闭热带雨林生态系统中,在为期四个月的受控干旱和复湿实验中,提供了大气中单萜和异戊二烯对映体分离的数据。令人惊讶的是,排放的对映异构体显示出明显的日变化排放峰值,对逐渐干燥的反应不同。同位素标记确定,植被主要排放从头合成的(-)-α-蒎烯,而(+)-α-蒎烯则从储存库中排放。随着干旱的发展,(-)-α-蒎烯排放的来源转向储存库,有利于云的形成。干旱前两种α-蒎烯对映体的混合比与其他单萜的相关性优于彼此,表明不同的酶控制。这些结果表明,对映体分布是理解森林生态系统中单萜排放背后的过程以及预测气候变化对大气反馈的关键。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e94c/9452298/40379b168a89/41586_2022_5020_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验