Yung Michelle Lynn, Murawska-Wlodarczyk Kamila, Babst-Kostecka Alicja, Maier Raina Margaret, Merchant Nirav, Ooi Aikseng
Superfund Research Program, The University of Arizona, Tucson, AZ, USA.
Data Science Institute, The University of Arizona, Tucson, AZ, USA.
Bioinform Biol Insights. 2025 Jun 8;19:11779322251344033. doi: 10.1177/11779322251344033. eCollection 2025.
Automated leaf segmentation pipelines must balance accuracy, scalability, and usability to be readily adopted in plant research. We present an end-to-end deep learning pipeline designed for practical use in plant phenotyping, which we developed and evaluated during a real-world plant growth experiment using . The pipeline integrates a fine-tuned Mask Region-based Convolutional Neural Network (Mask R-CNN) segmentation model trained on 176 plant images and achieves high performance despite the small training data set (Dice coefficient = 0.781). We quantitatively compare the fine-tuned Mask R-CNN model to Meta AI's Segment Anything Model (SAM) and evaluate natural language prompts using Grounded SAM and the Leaf-Only SAM post-processing pipeline for refining segmentation outputs. Our findings highlight that transfer learning on a specialized data set can still outperform a large foundation model in domain-specific tasks. In addition, we integrate QR codes for automated sample identification and benchmark multiple QR code decoding libraries, evaluating their robustness under real-world imaging conditions like distortion and lighting variation. To ensure accessibility, we deploy the pipeline as a user-friendly Streamlit web application, allowing researchers to analyze images without deep learning expertise. By focusing on practical deployment in addition to model performance, this study provides an open-source, scalable framework for plant science applications and addresses real-world challenges in automation and usability by the end-researcher.
自动化叶片分割流程必须在准确性、可扩展性和可用性之间取得平衡,以便在植物研究中易于采用。我们提出了一种专为植物表型分析实际应用而设计的端到端深度学习流程,该流程是在使用……的实际植物生长实验中开发和评估的。该流程集成了一个在176张植物图像上训练的微调基于掩码区域的卷积神经网络(Mask R-CNN)分割模型,尽管训练数据集较小(骰子系数 = 0.781),但仍实现了高性能。我们将微调后的Mask R-CNN模型与Meta AI的分割一切模型(SAM)进行了定量比较,并使用基于地面的SAM和仅叶片SAM后处理流程评估自然语言提示,以细化分割输出。我们的研究结果突出表明,在特定领域数据集上的迁移学习在特定领域任务中仍可优于大型基础模型。此外,我们集成了二维码用于自动样本识别,并对多个二维码解码库进行了基准测试,评估它们在诸如失真和光照变化等实际成像条件下的鲁棒性。为确保可访问性,我们将该流程部署为一个用户友好的Streamlit网络应用程序,使研究人员无需深度学习专业知识就能分析图像。通过除了关注模型性能外还注重实际部署,本研究为植物科学应用提供了一个开源、可扩展的框架,并解决了终端研究人员在自动化和可用性方面的实际挑战。