Villanueva-Miranda Ismael, Rong Ruichen, Quan Peiran, Wen Zhuoyu, Zhan Xiaowei, Yang Donghan M, Chi Zhikai, Xie Yang, Xiao Guanghua
Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
Cancers (Basel). 2024 Jun 28;16(13):2391. doi: 10.3390/cancers16132391.
Recent advances in foundation models have revolutionized model development in digital pathology, reducing dependence on extensive manual annotations required by traditional methods. The ability of foundation models to generalize well with few-shot learning addresses critical barriers in adapting models to diverse medical imaging tasks. This work presents the Granular Box Prompt Segment Anything Model (GB-SAM), an improved version of the Segment Anything Model (SAM) fine-tuned using granular box prompts with limited training data. The GB-SAM aims to reduce the dependency on expert pathologist annotators by enhancing the efficiency of the automated annotation process. Granular box prompts are small box regions derived from ground truth masks, conceived to replace the conventional approach of using a single large box covering the entire H&E-stained image patch. This method allows a localized and detailed analysis of gland morphology, enhancing the segmentation accuracy of individual glands and reducing the ambiguity that larger boxes might introduce in morphologically complex regions. We compared the performance of our GB-SAM model against U-Net trained on different sizes of the CRAG dataset. We evaluated the models across histopathological datasets, including CRAG, GlaS, and Camelyon16. GB-SAM consistently outperformed U-Net, with reduced training data, showing less segmentation performance degradation. Specifically, on the CRAG dataset, GB-SAM achieved a Dice coefficient of 0.885 compared to U-Net's 0.857 when trained on 25% of the data. Additionally, GB-SAM demonstrated segmentation stability on the CRAG testing dataset and superior generalization across unseen datasets, including challenging lymph node segmentation in Camelyon16, which achieved a Dice coefficient of 0.740 versus U-Net's 0.491. Furthermore, compared to SAM-Path and Med-SAM, GB-SAM showed competitive performance. GB-SAM achieved a Dice score of 0.900 on the CRAG dataset, while SAM-Path achieved 0.884. On the GlaS dataset, Med-SAM reported a Dice score of 0.956, whereas GB-SAM achieved 0.885 with significantly less training data. These results highlight GB-SAM's advanced segmentation capabilities and reduced dependency on large datasets, indicating its potential for practical deployment in digital pathology, particularly in settings with limited annotated datasets.
基础模型的最新进展彻底改变了数字病理学中的模型开发,减少了对传统方法所需大量人工注释的依赖。基础模型通过少样本学习进行良好泛化的能力解决了模型适应各种医学成像任务的关键障碍。这项工作提出了粒度框提示分割一切模型(GB-SAM),它是分割一切模型(SAM)的改进版本,使用有限训练数据的粒度框提示进行微调。GB-SAM旨在通过提高自动注释过程的效率来减少对专家病理学家注释的依赖。粒度框提示是从真实掩码派生的小框区域,旨在取代使用单个大框覆盖整个苏木精-伊红(H&E)染色图像块的传统方法。这种方法允许对腺体形态进行局部和详细的分析,提高单个腺体的分割精度,并减少较大框在形态复杂区域可能引入的模糊性。我们将GB-SAM模型的性能与在不同大小的CRAG数据集上训练的U-Net进行了比较。我们在包括CRAG、GlaS和Camelyon16在内的组织病理学数据集上评估了这些模型。GB-SAM始终优于U-Net,在训练数据减少的情况下,分割性能下降较少。具体而言,在CRAG数据集上,当在25%的数据上进行训练时,GB-SAM的Dice系数达到0.885,而U-Net为0.857。此外,GB-SAM在CRAG测试数据集上表现出分割稳定性,并且在未见数据集上具有卓越的泛化能力,包括在Camelyon16中具有挑战性的淋巴结分割,其Dice系数为0.740,而U-Net为0.491。此外,与SAM-Path和Med-SAM相比,GB-SAM表现出具有竞争力的性能。GB-SAM在CRAG数据集上的Dice分数为0.900,而SAM-Path为0.884。在GlaS数据集上,Med-SAM报告的Dice分数为0.956,而GB-SAM在训练数据显著更少的情况下达到了0.885。这些结果突出了GB-SAM先进的分割能力以及对大型数据集的依赖性降低,表明其在数字病理学实际部署中的潜力,特别是在注释数据集有限的环境中。