Suppr超能文献

使用带有初始模块的任何方法对超声图像中的子宫内膜进行自动分割。

Segment anything with inception module for automated segmentation of endometrium in ultrasound images.

作者信息

Qiu Yang, Xie Zhun, Jiang Yingchun, Ma Jianguo

机构信息

Beijing Zhongguancun Hospital, Beijing, China.

Beihang University, School of Instrumentation and Opto-electric Engineering, Beijing, China.

出版信息

J Med Imaging (Bellingham). 2024 May;11(3):034504. doi: 10.1117/1.JMI.11.3.034504. Epub 2024 May 30.

Abstract

PURPOSE

Accurate segmentation of the endometrium in ultrasound images is essential for gynecological diagnostics and treatment planning. Manual segmentation methods are time-consuming and subjective, prompting the exploration of automated solutions. We introduce "segment anything with inception module" (SAIM), a specialized adaptation of the segment anything model, tailored specifically for the segmentation of endometrium structures in ultrasound images.

APPROACH

SAIM incorporates enhancements to the image encoder structure and integrates point prompts to guide the segmentation process. We utilized ultrasound images from patients undergoing hysteroscopic surgery in the gynecological department to train and evaluate the model.

RESULTS

Our study demonstrates SAIM's superior segmentation performance through quantitative and qualitative evaluations, surpassing existing automated methods. SAIM achieves a dice similarity coefficient of 76.31% and an intersection over union score of 63.71%, outperforming traditional task-specific deep learning models and other SAM-based foundation models.

CONCLUSIONS

The proposed SAIM achieves high segmentation accuracy, providing high diagnostic precision and efficiency. Furthermore, it is potentially an efficient tool for junior medical professionals in education and diagnosis.

摘要

目的

超声图像中子宫内膜的准确分割对于妇科诊断和治疗规划至关重要。手动分割方法既耗时又主观,这促使人们探索自动化解决方案。我们引入了“带初始模块的任意分割”(SAIM),这是对任意分割模型的一种专门改编,专为超声图像中子宫内膜结构的分割而定制。

方法

SAIM对图像编码器结构进行了改进,并集成了点提示以指导分割过程。我们利用妇科接受宫腔镜手术患者的超声图像来训练和评估该模型。

结果

我们的研究通过定量和定性评估证明了SAIM卓越的分割性能,超过了现有的自动化方法。SAIM的骰子相似系数达到76.31%,交并比分数达到63.71%,优于传统的特定任务深度学习模型和其他基于SAM的基础模型。

结论

所提出的SAIM实现了高分割精度,提供了高诊断精度和效率。此外,它可能是初级医学专业人员在教育和诊断方面的有效工具。

相似文献

4
Sam2Rad: A segmentation model for medical images with learnable prompts.Sam2Rad:一种具有可学习提示的医学图像分割模型。
Comput Biol Med. 2025 Mar;187:109725. doi: 10.1016/j.compbiomed.2025.109725. Epub 2025 Feb 5.

本文引用的文献

2
Segment anything in medical images.在医学图像中分割任何内容。
Nat Commun. 2024 Jan 22;15(1):654. doi: 10.1038/s41467-024-44824-z.
7
Artificial intelligence in ultrasound.人工智能在超声中的应用。
Eur J Radiol. 2021 Jun;139:109717. doi: 10.1016/j.ejrad.2021.109717. Epub 2021 Apr 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验